Two's company, three's a crowd: co-occurring pollinators and parasite species in Breynia oblongifolia (Phyllanthaceae).

J T D Finch, S A Power, J A Welbergen, J M Cook
Author Information
  1. J T D Finch: Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Science Rd, Richmond, NSW, 2753, Australia. Jtd.finch@gmail.com.
  2. S A Power: Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Science Rd, Richmond, NSW, 2753, Australia.
  3. J A Welbergen: Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Science Rd, Richmond, NSW, 2753, Australia.
  4. J M Cook: Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Science Rd, Richmond, NSW, 2753, Australia.

Abstract

BACKGROUND: Obligate pollination mutualisms (OPMs) are specialized interactions in which female pollinators transport pollen between the male and female flowers of a single plant species and then lay eggs into those same flowers. The pollinator offspring hatch and feed upon some or all of the developing ovules pollinated by their mothers. Strong trait matching between plants and their pollinators in OPMs is expected to result in reciprocal partner specificity i.e., a single pollinator species using a single plant species and vice versa, and strict co-speciation. These issues have been studied extensively in figs and fig wasps, but little in the more recently discovered co-diversification of Epicephala moths and their Phyllanthaceae hosts. OPMs involving Epicephala moths are believed occur in approximately 500 species of Phyllanthaceae, making it the second largest OPM group after the Ficus radiation (> 750 species). In this study, we used a mixture of DNA barcoding, genital morphology and behavioral observations to determine the number of Epicephala moth species inhabiting the fruits of Breynia oblongifolia, their geographic distribution, pollinating behavior and phylogenetic relationships.
RESULTS: We found that B. oblongifolia hosts two species of pollinator that co-occurred at all study sites, violating the assumption of reciprocal specificity. Male and female genital morphologies both differed considerably between the two moth species. In particular, females differed in the shape of their ovipositors, eggs and oviposition sites. Phylogenetic analyses indicated that the two Epicephala spp. on B. oblongifolia likely co-exist due to a host switch. In addition, we discovered that Breynia fruits are also often inhabited by a third moth, an undescribed species of Herpystis, which is a non-pollinating seed parasite.
CONCLUSIONS: Our study reveals new complexity in interactions between Phyllantheae and Epicephala pollinators and highlights that host switching, co-speciation and non-pollinating seed parasites can shape species interactions in OPMs. Our finding that co-occurring Epicephala species have contrasting oviposition modes parallels other studies and suggests that such traits are important in Epicephala species coexistence.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.6651062.v1

References

  1. Trends Ecol Evol. 2006 Oct;21(10):585-92 [PMID: 16828927]
  2. Zookeys. 2015 Mar 05;(484):71-81 [PMID: 25829842]
  3. Proc Biol Sci. 2009 Feb 7;276(1656):417-26 [PMID: 18948251]
  4. Mol Phylogenet Evol. 2006 Jun;39(3):747-58 [PMID: 16500119]
  5. Evolution. 1990 Sep;44(6):1389-1403 [PMID: 28564298]
  6. Mol Ecol. 2002 Aug;11(8):1573-8 [PMID: 12144676]
  7. Evolution. 2003 Aug;57(8):1804-21 [PMID: 14503622]
  8. Mol Ecol. 2006 Oct;15(12):3567-81 [PMID: 17032258]
  9. Mol Phylogenet Evol. 1999 Apr;11(3):401-14 [PMID: 10196081]
  10. Zookeys. 2016 Feb 23;(568):87-118 [PMID: 27103875]
  11. Mol Biol Evol. 2017 Mar 1;34(3):772-773 [PMID: 28013191]
  12. Biotechniques. 1991 Apr;10(4):506-13 [PMID: 1867860]
  13. Ecol Lett. 2010 Mar;13(3):321-9 [PMID: 20113331]
  14. Am J Bot. 2004 Mar;91(3):410-5 [PMID: 21653396]
  15. Mol Biol Evol. 2006 Jan;23(1):7-9 [PMID: 16177232]
  16. Am Nat. 2001 Jul;158(1):49-63 [PMID: 18707314]
  17. Proc Biol Sci. 2012 Feb 22;279(1729):794-803 [PMID: 21795273]
  18. Syst Biol. 2013 Sep;62(5):660-73 [PMID: 23628960]
  19. Trends Ecol Evol. 1999 Feb;14(2):49-53 [PMID: 10234251]
  20. Cold Spring Harb Perspect Biol. 2015 Apr 15;7(5): [PMID: 25877218]
  21. PLoS Biol. 2005 Dec;3(12):e422 [PMID: 16336051]
  22. Ecol Evol. 2015 Aug 28;5(18):4049-62 [PMID: 26442762]
  23. Oecologia. 2003 Jul;136(2):236-43 [PMID: 12756527]
  24. Biol Lett. 2012 Apr 23;8(2):258-61 [PMID: 21900312]
  25. Zookeys. 2015 Jun 15;(508):53-67 [PMID: 26167120]
  26. Mol Ecol. 2010 Apr;19(7):1483-96 [PMID: 20456233]
  27. Evolution. 2003 Jun;57(6):1255-69 [PMID: 12894934]
  28. Mitochondrial DNA. 2010 Jun;21(3-4):138-46 [PMID: 20795783]
  29. Evolution. 2002 Sep;56(9):1821-30 [PMID: 12389727]
  30. Mol Ecol Resour. 2012 May;12(3):562-5 [PMID: 22243808]
  31. Evolution. 2004 Oct;58(10):2201-14 [PMID: 15562685]
  32. Int J Evol Biol. 2012;2012:247352 [PMID: 22263116]
  33. Proc Biol Sci. 2001 Jun 7;268(1472):1113-21 [PMID: 11375097]
  34. Mol Ecol. 2017 Feb;26(3):937-950 [PMID: 28026893]
  35. Bioinformatics. 2013 Nov 15;29(22):2869-76 [PMID: 23990417]
  36. Proc Biol Sci. 2010 Sep 22;277(1695):2765-74 [PMID: 20427340]
  37. Syst Biol. 2013 Sep;62(5):707-24 [PMID: 23681854]
  38. Proc Natl Acad Sci U S A. 2005 May 3;102 Suppl 1:6558-65 [PMID: 15851680]
  39. Science. 1969 Feb 7;163(3867):580-1 [PMID: 17750894]
  40. PLoS One. 2012;7(7):e41657 [PMID: 22848559]
  41. Oecologia. 1989 Jan;78(1):53-59 [PMID: 28311901]
  42. Am Nat. 2017 Apr;189(4):422-435 [PMID: 28350503]
  43. BMC Evol Biol. 2006 Oct 13;6:83 [PMID: 17040562]
  44. Mol Ecol. 2004 Jun;13(6):1613-23 [PMID: 15140104]
  45. Proc Biol Sci. 2005 Dec 22;272(1581):2593-9 [PMID: 16321781]
  46. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5264-7 [PMID: 12695568]
  47. Am J Bot. 2004 Sep;91(9):1319-25 [PMID: 21652364]
  48. Cladistics. 2010 Aug;26(4):359-387 [PMID: 34875808]
  49. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  50. PLoS One. 2013 Jul 10;8(7):e68535 [PMID: 23874660]
  51. Mol Ecol. 2001 May;10(5):1247-53 [PMID: 11380881]
  52. Proc Biol Sci. 2013 May 01;280(1761):20130361 [PMID: 23760638]
  53. BMC Evol Biol. 2014 Sep 18;14:189 [PMID: 25927719]
  54. Monogr Popul Biol. 1980;15:1-237 [PMID: 6993919]
  55. Mol Biol Evol. 2007 Feb;24(2):513-21 [PMID: 17119011]
  56. Nature. 1996 Mar 14;380(6570):155-6 [PMID: 8600388]

MeSH Term

Animals
Bayes Theorem
DNA Barcoding, Taxonomic
Female
Geography
Male
Malpighiaceae
Moths
New South Wales
Ovary
Oviposition
Ovule
Parasites
Phylogeny
Pollination
Species Specificity

Word Cloud

Created with Highcharts 10.0.0speciesEpicephalaOPMspollinatorsBreyniaoblongifoliainteractionsfemalesinglepollinatorPhyllanthaceaestudymothtwoflowersplanteggsreciprocalspecificityco-speciationdiscoveredmothshostsOPMgenitalfruitsBsitesdifferedshapeovipositionhostswitchHerpystisnon-pollinatingseedparasiteco-occurringBACKGROUND:ObligatepollinationmutualismsspecializedtransportpollenmalelayoffspringhatchfeedupondevelopingovulespollinatedmothersStrongtraitmatchingplantsexpectedresultpartnerieusingviceversastrictissuesstudiedextensivelyfigsfigwaspslittlerecentlyco-diversificationinvolvingbelievedoccurapproximately500makingsecondlargestgroupFicusradiation> 750usedmixtureDNAbarcodingmorphologybehavioralobservationsdeterminenumberinhabitinggeographicdistributionpollinatingbehaviorphylogeneticrelationshipsRESULTS:foundco-occurredviolatingassumptionMalemorphologiesconsiderablyparticularfemalesovipositorsPhylogeneticanalysesindicatedspplikelyco-existdueadditionalsoofteninhabitedthirdundescribedCONCLUSIONS:revealsnewcomplexityPhyllantheaehighlightsswitchingparasitescanfindingcontrastingmodesparallelsstudiessuggeststraitsimportantcoexistenceTwo'scompanythree'scrowd:HostMutualismPollination

Similar Articles

Cited By