Bayesian Functional Joint Models for Multivariate Longitudinal and Time-to-Event Data.

Kan Li, Sheng Luo
Author Information
  1. Kan Li: Merck Research Lab, Merck & Co, 351 North Sumneytown Pike, North Wales, PA 19454, USA.
  2. Sheng Luo: Department of Biostatistics and Bioinformatics, Duke University Medical Center, 2400 Pratt St, 7040 North Pavilion, Durham, NC 27705, USA.

Abstract

A multivariate functional joint model framework is proposed which enables the repeatedly measured functional outcomes, scalar outcomes, and survival process to be modeled simultaneously while accounting for association among the multiple (functional and scalar) longitudinal and survival processes. This data structure is increasingly common across medical studies of neurodegenerative diseases and is exemplified by the motivating Alzheimer's Disease Neuroimaging Initiative (ADNI) study, in which serial brain imaging, clinical and neuropsychological assessments are collected to measure the progression of Alzheimer's disease (AD). The proposed functional joint model consists of a longitudinal function-on-scalar submodel, a regular longitudinal submodel, and a survival submodel which allows time-dependent functional and scalar covariates. A Bayesian approach is adopted for parameter estimation and a dynamic prediction framework is introduced for predicting the subjects' future health outcomes and risk of AD conversion. The proposed model is evaluated by a simulation study and is applied to the motivating ADNI study.

Keywords

References

  1. Arch Neurol. 1999 Mar;56(3):303-8 [PMID: 10190820]
  2. J Neurol Neurosurg Psychiatry. 2001 Oct;71(4):441-7 [PMID: 11561025]
  3. Biometrics. 2002 Mar;58(1):121-8 [PMID: 11890306]
  4. Biostatistics. 2000 Dec;1(4):465-80 [PMID: 12933568]
  5. Neurobiol Aging. 2010 Jul;31(7):1077-88 [PMID: 18814937]
  6. Neuroimage. 2009 Apr 15;45(3):656-61 [PMID: 19280688]
  7. Curr Alzheimer Res. 2009 Aug;6(4):347-61 [PMID: 19689234]
  8. J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199 [PMID: 19759841]
  9. Nature. 2009 Oct 15;461(7266):916-22 [PMID: 19829371]
  10. Psychol Med. 2010 Jan;40(1):135-45 [PMID: 19863841]
  11. Brain Cogn. 2010 Apr;72(3):400-7 [PMID: 20044193]
  12. Lancet Neurol. 2010 Jan;9(1):119-28 [PMID: 20083042]
  13. Nat Rev Neurol. 2010 Feb;6(2):67-77 [PMID: 20139996]
  14. Ann Appl Stat. 2009 Mar 1;3(1):458-488 [PMID: 20221415]
  15. J Am Stat Assoc. 2009 Dec 1;104(488):1550-1561 [PMID: 20625442]
  16. Biometrics. 2011 Sep;67(3):819-29 [PMID: 21306352]
  17. Neuroimage. 2011 Jun 1;56(3):907-22 [PMID: 21352927]
  18. J Stat Softw. 2010 Jan 1;32(11):null [PMID: 21743798]
  19. Electron J Stat. 2010;4:1022-1054 [PMID: 21743825]
  20. PLoS One. 2011;6(7):e21896 [PMID: 21814561]
  21. Arch Gen Psychiatry. 2011 Sep;68(9):961-9 [PMID: 21893661]
  22. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  23. Alzheimers Dement. 2013 Sep;9(5):e111-94 [PMID: 23932184]
  24. Stat Methods Med Res. 2016 Oct;25(5):2180-2192 [PMID: 24448442]
  25. Am J Alzheimers Dis (Columbia). 2013;2(1):12-28 [PMID: 24524014]
  26. Biometrics. 2015 Jun;71(2):344-53 [PMID: 25620473]
  27. Stat (Int Stat Inst). 2015;4(1):212-226 [PMID: 26594358]
  28. J R Stat Soc Ser C Appl Stat. 2016 Feb;65(2):215-236 [PMID: 27546913]
  29. BMC Med Res Methodol. 2016 Sep 07;16(1):117 [PMID: 27604810]
  30. Stat Methods Med Res. 2018 Aug;27(8):2264-2278 [PMID: 27895266]
  31. Sci Rep. 2017 Jan 12;7:39880 [PMID: 28079104]
  32. J Alzheimers Dis. 2017;58(2):361-371 [PMID: 28436391]
  33. Stat Med. 2017 Sep 30;36(22):3560-3572 [PMID: 28664662]
  34. Stat Methods Med Res. 2017 Jan 1;:962280217722177 [PMID: 28750578]
  35. Ann Appl Stat. 2017 Sep;11(3):1787-1809 [PMID: 29081873]
  36. Science. 1993 Aug 13;261(5123):921-3 [PMID: 8346443]
  37. Stat Med. 1996 Aug 15;15(15):1663-85 [PMID: 8858789]

Grants

  1. R01 NS091307/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0functionalmodelproposedoutcomesscalarsurvivallongitudinalstudysubmodeljointframeworkdatamotivatingAlzheimer'sADNIdiseaseADBayesianpredictionJointLongitudinalmultivariateenablesrepeatedlymeasuredprocessmodeledsimultaneouslyaccountingassociationamongmultipleprocessesstructureincreasinglycommonacrossmedicalstudiesneurodegenerativediseasesexemplifiedDiseaseNeuroimagingInitiativeserialbrainimagingclinicalneuropsychologicalassessmentscollectedmeasureprogressionconsistsfunction-on-scalarregularallowstime-dependentcovariatesapproachadoptedparameterestimationdynamicintroducedpredictingsubjects'futurehealthriskconversionevaluatedsimulationappliedFunctionalModelsMultivariateTime-to-EventDataAlzheimer’sDynamicmodeling

Similar Articles

Cited By