Modelling of the SDF-1/CXCR4 regulated homing of therapeutic mesenchymal stem/stromal cells in mice.

Wang Jin, Xiaowen Liang, Anastasia Brooks, Kathryn Futrega, Xin Liu, Michael R Doran, Matthew J Simpson, Michael S Roberts, Haolu Wang
Author Information
  1. Wang Jin: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
  2. Xiaowen Liang: Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia.
  3. Anastasia Brooks: Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia.
  4. Kathryn Futrega: Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia.
  5. Xin Liu: Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia.
  6. Michael R Doran: Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia.
  7. Matthew J Simpson: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
  8. Michael S Roberts: Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia.
  9. Haolu Wang: Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia.

Abstract

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are a promising tool for cell-based therapies in the treatment of tissue injury. The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis plays a significant role in directing MSC homing to sites of injury. However MSC distribution following intravenous transplantation remains poorly understood, potentially hampering the precise prediction and evaluation of therapeutic efficacy.
METHODS: A murine model of partial ischemia/reperfusion (I/R) is used to induce liver injury, increase the hepatic levels of SDF-1, and study MSC distribution. Hypoxia-preconditioning increases the expression of CXCR4 in human bone marrow-derived MSCs. Quantitative assays for human DNA using droplet digital PCR (ddPCR) allow us to examine the kinetics of intravenously infused human MSCs in mouse blood and liver. A mathematical model-based system is developed to characterize homing of human MSCs in mouse models with SDF-1 levels in liver and CXCR4 expression on the transfused MSCs. The model is calibrated to experimental data to provide novel estimates of relevant parameter values.
RESULTS: Images of immunohistochemistry for SDF-1 in the mouse liver with I/R injury show a significantly higher SDF-1 level in the I/R injured liver than that in the control. Correspondingly, the ddPCR results illustrate a higher MSC concentration in the I/R injured liver than the normal liver. CXCR4 is overexpressed in hypoxia-preconditioned MSCs. An increased number of hypoxia-preconditioned MSCs in the I/R injured liver is observed from the ddPCR results. The model simulations align with the experimental data of control and hypoxia-preconditioned human MSC distribution in normal and injured mouse livers, and accurately predict the experimental outcomes with different MSC doses.
DISCUSSION: The modelling results suggest that SDF-1 in organs is an effective attractant for MSCs through the SDF-1/CXCR4 axis and reveal the significance of the SDF-1/CXCR4 chemotaxis on homing of MSCs. This modelling approach allows qualitative characterization and prediction of the MSC homing to normal and injured organs on the basis of clinically accessible variables, such as the MSC dose and SDF-1 concentration in blood. This model could also be adapted to abnormal conditions and/or other types of circulating cells to predict homing patterns.

Keywords

References

  1. Hepatology. 1999 Dec;30(6):1448-53 [PMID: 10573524]
  2. Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3326-31 [PMID: 12882777]
  3. Blood Cells Mol Dis. 2004 Jan-Feb;32(1):52-7 [PMID: 14757413]
  4. Stem Cells. 2004;22(3):415-27 [PMID: 15153618]
  5. Circulation. 2004 Nov 23;110(21):3300-5 [PMID: 15533866]
  6. Nat Immunol. 2005 Oct;6(10):1038-46 [PMID: 16170318]
  7. Eur J Cell Biol. 2006 Nov;85(11):1179-88 [PMID: 16824647]
  8. Cancer Res. 2007 Dec 15;67(24):11687-95 [PMID: 18089798]
  9. Shock. 2008 Nov;30(5):518-26 [PMID: 18317411]
  10. Circ Res. 2009 Feb 13;104(3):398-402 [PMID: 19096027]
  11. Arthritis Rheum. 2009 Mar;60(3):813-23 [PMID: 19248097]
  12. Cell Stem Cell. 2009 Mar 6;4(3):206-16 [PMID: 19265660]
  13. Stem Cells. 2009 Apr;27(4):857-65 [PMID: 19350687]
  14. Cancer Res. 2009 Nov 15;69(22):8814-21 [PMID: 19887613]
  15. Annu Rev Biomed Eng. 2010 Aug 15;12:87-117 [PMID: 20415588]
  16. Br J Cancer. 2010 May 25;102(11):1555-77 [PMID: 20502460]
  17. Arch Neurol. 2010 Oct;67(10):1187-94 [PMID: 20937945]
  18. Clin Pharmacol Ther. 2011 Feb;89(2):259-67 [PMID: 21191381]
  19. Stem Cells. 2011 Jun;29(6):920-7 [PMID: 21557390]
  20. Cell Commun Signal. 2011 May 14;9:12 [PMID: 21569606]
  21. Wiley Interdiscip Rev Syst Biol Med. 2012 May-Jun;4(3):221-35 [PMID: 22246674]
  22. Cardiovasc Res. 2012 Jun 1;94(3):400-7 [PMID: 22451511]
  23. PLoS One. 2012;7(4):e34608 [PMID: 22511954]
  24. J Surg Res. 2013 Jul;183(1):427-34 [PMID: 23462453]
  25. Blood. 2014 Jun 26;123(26):4132-5 [PMID: 24829205]
  26. Nat Med. 2014 Aug;20(8):870-80 [PMID: 25100532]
  27. Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5363-72 [PMID: 25468967]
  28. Stem Cells. 2015 Jun;33(6):1818-28 [PMID: 25702874]
  29. Am J Physiol Gastrointest Liver Physiol. 2015 Apr 15;308(8):G702-9 [PMID: 25721302]
  30. Front Neurol. 2015 Jul 20;6:155 [PMID: 26257702]
  31. Cell Transplant. 2016;25(5):829-48 [PMID: 26423725]
  32. Elife. 2015 Oct 15;4:null [PMID: 26468615]
  33. PeerJ. 2016 Jan 14;4:e1536 [PMID: 26788424]
  34. Cancer Res. 2016 Apr 1;76(7):1705-13 [PMID: 26833122]
  35. Sci Rep. 2016 Feb 29;6:22293 [PMID: 26924777]
  36. PeerJ. 2016 Mar 24;4:e1845 [PMID: 27042394]
  37. Phys Biol. 2016 Oct 07;13(5):056003 [PMID: 27716634]
  38. PeerJ. 2017 May 17;5:e3301 [PMID: 28533959]
  39. PLoS One. 2017 Jul 27;12(7):e0181941 [PMID: 28750084]
  40. Stem Cell Reports. 2017 Sep 12;9(3):868-882 [PMID: 28867345]
  41. PeerJ. 2018 Feb 12;6:e4336 [PMID: 29456886]
  42. J Theor Biol. 2018 May 14;445:51-61 [PMID: 29481822]
  43. Cancer Res. 1996 Aug 15;56(16):3771-81 [PMID: 8706023]

Word Cloud

Created with Highcharts 10.0.0MSCsMSCliverSDF-1homingI/RhumaninjuredcellsinjuryCXCR4modelmousedistributionddPCRexperimentalresultsnormalhypoxia-preconditionedmodellingSDF-1/CXCR4Mesenchymalstem/stromalaxistransplantationpredictiontherapeuticlevelsexpressionblooddatahighercontrolconcentrationpredictorgansBACKGROUND:promisingtoolcell-basedtherapiestreatmenttissuestromalcell-derivedfactor-1/CXCchemokinereceptor4playssignificantroledirectingsitesHoweverfollowingintravenousremainspoorlyunderstoodpotentiallyhamperingpreciseevaluationefficacyMETHODS:murinepartialischemia/reperfusionusedinduceincreasehepaticstudyHypoxia-preconditioningincreasesbonemarrow-derivedQuantitativeassaysDNAusingdropletdigitalPCRallowusexaminekineticsintravenouslyinfusedmathematicalmodel-basedsystemdevelopedcharacterizemodelstransfusedcalibratedprovidenovelestimatesrelevantparametervaluesRESULTS:ImagesimmunohistochemistryshowsignificantlylevelCorrespondinglyillustrateoverexpressedincreasednumberobservedsimulationsalignliversaccuratelyoutcomesdifferentdosesDISCUSSION:suggesteffectiveattractantrevealsignificancechemotaxisapproachallowsqualitativecharacterizationbasisclinicallyaccessiblevariablesdosealsoadaptedabnormalconditionsand/ortypescirculatingpatternsModellingregulatedmesenchymalmiceChemotaxisvivoMathematicalstemStemcell

Similar Articles

Cited By