Predicting Drug-Drug Interactions Between Rifampicin and Long-Acting Cabotegravir and Rilpivirine Using Physiologically Based Pharmacokinetic Modeling.

Rajith K R Rajoli, Paul Curley, Justin Chiong, David Back, Charles Flexner, Andrew Owen, Marco Siccardi
Author Information
  1. Rajith K R Rajoli: Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom.
  2. Paul Curley: Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom.
  3. Justin Chiong: Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom.
  4. David Back: Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom.
  5. Charles Flexner: Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, Maryland.
  6. Andrew Owen: Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom.
  7. Marco Siccardi: Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom.

Abstract

BACKGROUND: Cabotegravir and rilpivirine are 2 long-acting (LA) antiretrovirals that can be administered intramuscularly; their interaction with rifampicin, a first-line antituberculosis agent, has not been investigated. The aim of this study was to simulate and predict drug-drug interactions (DDIs) between these LA antiretroviral agents and rifampicin using physiologically based pharmacokinetic (PBPK) modeling.
METHODS: The designed PBPK models were qualified (according to European Medicines Agency guidelines) against observed data for oral formulations of cabotegravir, rilpivirine, and rifampicin. Induction potential of rifampicin was also qualified by comparing the DDI between oral cabotegravir and oral rilpivirine with rifampicin. Qualified PBPK models were utilized for pharmacokinetic prediction of DDIs.
RESULTS: PBPK models predicted a reduction in both area under the curve (AUC0-28 days) and trough concentration (Ctrough, 28th day) of LA cabotegravir of 41%-46% for the first maintenance dose coadministered with 600 mg once-daily oral rifampicin. Rilpivirine concentrations were predicted to decrease by 82% for both AUC0-28 days and Ctrough, 28th day following the first maintenance dose when coadministered with rifampicin.
CONCLUSIONS: The developed PBPK models predicted the theoretical effect of rifampicin on cabotegravir and rilpivirine LA intramuscular formulations. According to these simulations, it is likely that coadministration of rifampicin with these LA formulations will result in subtherapeutic concentrations of both drugs.

Keywords

References

  1. Ther Deliv. 2011 May;2(5):643-72 [PMID: 21837267]
  2. Lancet. 2017 Sep 23;390(10101):1499-1510 [PMID: 28750935]
  3. BMC Infect Dis. 2009 Apr 21;9:46 [PMID: 19383122]
  4. Drug Metab Dispos. 2018 Jan;46(1):26-32 [PMID: 29038231]
  5. HIV AIDS (Auckl). 2011;3:35-44 [PMID: 22096405]
  6. J Antimicrob Chemother. 2015 Dec;70(12):3298-306 [PMID: 26342028]
  7. J Antimicrob Chemother. 2008 Nov;62(5):872-8 [PMID: 18713760]
  8. J Antimicrob Chemother. 2018 Apr 1;73(4):1004-1012 [PMID: 29365101]
  9. Clin Pharmacokinet. 2003;42(10):883-908 [PMID: 12885263]
  10. CPT Pharmacometrics Syst Pharmacol. 2016 Jul;5(7):367-76 [PMID: 27435752]
  11. AIDS. 1999 Oct 1;13(14):1899-904 [PMID: 10513648]
  12. Glob Health Action. 2015 Mar 27;8:27048 [PMID: 25819037]
  13. J Antimicrob Chemother. 2017 Mar 1;72(3):805-811 [PMID: 27999009]
  14. Klin Wochenschr. 1985 Dec 2;63(23):1205-11 [PMID: 4087830]
  15. Clin Pharmacokinet. 2008;47(4):261-75 [PMID: 18336055]
  16. Drug Metab Dispos. 2010 Jul;38(7):1147-58 [PMID: 20368326]
  17. Antimicrob Agents Chemother. 2016 Dec 27;61(1): [PMID: 27799217]
  18. Farmaco. 1999 Sep 30;54(9):594-9 [PMID: 10555261]
  19. PLoS One. 2013 Sep 24;8(9):e70330 [PMID: 24086247]
  20. J Pharm Sci. 2002 Jan;91(1):129-56 [PMID: 11782904]
  21. Antimicrob Agents Chemother. 2017 Sep 22;61(10): [PMID: 28739783]
  22. J Pharm Sci. 2014 Jul;103(7):2072-2087 [PMID: 24845884]
  23. Int J Tuberc Lung Dis. 2011 Nov;15(11):1485-9, i [PMID: 22008761]
  24. Int J Pharm. 1999 Sep 20;186(2):119-25 [PMID: 10486429]
  25. Clin Pharmacokinet. 2015 Jun;54(6):639-50 [PMID: 25523214]
  26. Crit Rev Toxicol. 2012 Oct;42(9):751-67 [PMID: 22954170]
  27. Curr Opin HIV AIDS. 2015 Jul;10(4):239-45 [PMID: 26049948]
  28. J Pharmacokinet Pharmacodyn. 2013 Oct;40(5):545-56 [PMID: 23912214]
  29. Clin Pharmacokinet. 2018 Feb;57(2):255-266 [PMID: 28540638]
  30. Clin Pharmacokinet. 2017 Apr;56(4):409-420 [PMID: 27599706]
  31. Clin Infect Dis. 2012 Oct;55(8):1154-63 [PMID: 22820541]
  32. J Acquir Immune Defic Syndr. 2014 Dec 15;67(5):487-92 [PMID: 25473882]

Grants

  1. MR/L006758/1/Medical Research Council
  2. R24 AI118397/NIAID NIH HHS

MeSH Term

Adolescent
Adult
Anti-Retroviral Agents
Computer Simulation
Delayed-Action Preparations
Drug Compounding
Drug Interactions
Female
HIV Infections
Humans
Injections, Intramuscular
Male
Middle Aged
Models, Theoretical
Pyridones
Rifampin
Rilpivirine
Young Adult

Chemicals

Anti-Retroviral Agents
Delayed-Action Preparations
Pyridones
Rilpivirine
cabotegravir
Rifampin

Word Cloud

Created with Highcharts 10.0.0rifampicinPBPKLAcabotegravirrilpivirinemodelsoralformulationspredictedCabotegravirlong-actinginteractionDDIspharmacokineticmodelingqualifiedAUC0-28daysCtrough28thdayfirstmaintenancedosecoadministeredRilpivirineconcentrationsBACKGROUND:2antiretroviralscanadministeredintramuscularlyfirst-lineantituberculosisagentinvestigatedaimstudysimulatepredictdrug-druginteractionsantiretroviralagentsusingphysiologicallybasedMETHODS:designedaccordingEuropeanMedicinesAgencyguidelinesobserveddataInductionpotentialalsocomparingDDIQualifiedutilizedpredictionRESULTS:reductionareacurvetroughconcentration41%-46%600mgonce-dailydecrease82%followingCONCLUSIONS:developedtheoreticaleffectintramuscularAccordingsimulationslikelycoadministrationwillresultsubtherapeuticdrugsPredictingDrug-DrugInteractionsRifampicinLong-ActingUsingPhysiologicallyBasedPharmacokineticModelingdrug–drug

Similar Articles

Cited By