Human Primary Epithelial Cell Models: Promising Tools in the Era of Cystic Fibrosis Personalized Medicine.

Nikhil T Awatade, Sharon L Wong, Chris K Hewson, Laura K Fawcett, Anthony Kicic, Adam Jaffe, Shafagh A Waters
Author Information
  1. Nikhil T Awatade: Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
  2. Sharon L Wong: Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
  3. Chris K Hewson: Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
  4. Laura K Fawcett: Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
  5. Anthony Kicic: Centre for Child Health Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.
  6. Adam Jaffe: Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
  7. Shafagh A Waters: Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.

Abstract

Cystic fibrosis (CF) is an inherited disorder where individual disease etiology and response to therapeutic intervention is impacted by CF transmembrane regulator (CFTR) mutations and other genetic modifiers. CFTR regulates multiple mechanisms in a diverse range of epithelial tissues. In this Review, we consolidate the latest updates in the development of primary epithelial cellular model systems relevant for CF. We discuss conventional two-dimensional (2-D) airway epithelial cell cultures, the backbone of cellular models to date, as well as improved expansion protocols to overcome finite supply of the cellular source. We highlight a range of strategies for establishment of three dimensional (3-D) airway and intestinal organoid models and evaluate the limitations and potential improvements in each system, focusing on their application in CF. The CFTR functional assays in patient-derived organoids allow for preclinical pharmacotherapy screening to identify responsive patients. It is likely that organoids will be an invaluable preclinical tool to unravel disease mechanisms, design novel treatments, and enable clinicians to provide personalized management for patients with CF.

Keywords

References

  1. PLoS One. 2012;7(10):e47708 [PMID: 23082198]
  2. Nature. 2009 May 14;459(7244):262-5 [PMID: 19329995]
  3. Cell Rep. 2015 Jan 13;10(2):239-52 [PMID: 25558064]
  4. EMBO J. 2019 Feb 15;38(4): [PMID: 30643021]
  5. Pediatr Pulmonol. 2018 Nov;53(S3):S12-S29 [PMID: 30062693]
  6. Am J Physiol Lung Cell Mol Physiol. 2018 Aug 1;315(2):L313-L327 [PMID: 29722564]
  7. N Engl J Med. 2017 Nov 23;377(21):2013-2023 [PMID: 29099344]
  8. PLoS One. 2013 Sep 10;8(9):e73905 [PMID: 24040112]
  9. Gut. 2014 Aug;63(8):1345-54 [PMID: 24841573]
  10. N Engl J Med. 2017 Nov 23;377(21):2024-2035 [PMID: 29099333]
  11. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18843-8 [PMID: 21976485]
  12. Am J Physiol Lung Cell Mol Physiol. 2006 Jun;290(6):L1117-30 [PMID: 16443646]
  13. J Cyst Fibros. 2018 Jan;17(1):26-33 [PMID: 28712885]
  14. Nat Med. 2011 Sep 04;17(10):1225-7 [PMID: 21892181]
  15. Am J Respir Crit Care Med. 2013 Jun 1;187(11):1219-25 [PMID: 23590265]
  16. N Engl J Med. 2015 Jul 16;373(3):220-31 [PMID: 25981758]
  17. Thorax. 2010 Jul;65(7):594-9 [PMID: 20627915]
  18. Lancet Respir Med. 2014 Jul;2(7):527-38 [PMID: 24973281]
  19. J Clin Invest. 2005 Sep;115(9):2564-71 [PMID: 16127463]
  20. Biomed Res Int. 2016;2016:5258727 [PMID: 27340661]
  21. Am J Physiol Cell Physiol. 2012 Dec 1;303(11):C1173-9 [PMID: 23015550]
  22. Biochem Cell Biol. 1991 Feb-Mar;69(2-3):102-8 [PMID: 2031713]
  23. Am J Respir Cell Mol Biol. 2016 Sep;55(3):323-36 [PMID: 27144410]
  24. Lancet Respir Med. 2016 Aug;4(8):e37-e38 [PMID: 27377414]
  25. Pediatr Pulmonol. 2013 Mar;48(3):229-35 [PMID: 22553157]
  26. Lab Invest. 2002 Aug;82(8):989-98 [PMID: 12177237]
  27. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18825-30 [PMID: 19846789]
  28. Mol Cell. 1998 Sep;2(3):397-403 [PMID: 9774978]
  29. Respir Res. 2013 Mar 28;14:38 [PMID: 23537407]
  30. Cell Stem Cell. 2016 Aug 4;19(2):217-231 [PMID: 27320041]
  31. Eur Respir J. 2018 Jun 7;51(6): [PMID: 29563174]
  32. Am J Respir Cell Mol Biol. 2017 May;56(5):568-574 [PMID: 27983869]
  33. J Cyst Fibros. 2004 Aug;3 Suppl 2:159-63 [PMID: 15463951]
  34. Nat Med. 2013 Jul;19(7):939-45 [PMID: 23727931]
  35. Eur Respir J. 2016 Aug;48(2):451-8 [PMID: 27103391]
  36. Int J Biochem Cell Biol. 2014 Jul;52:192-200 [PMID: 24561283]
  37. Curr Protoc Stem Cell Biol. 2016 May 12;37:IE.9.1-IE.9.15 [PMID: 27171795]
  38. PLoS One. 2018 Jan 23;13(1):e0191618 [PMID: 29360847]
  39. N Engl J Med. 2011 Nov 3;365(18):1663-72 [PMID: 22047557]
  40. Expert Opin Drug Saf. 2017 Nov;16(11):1305-1311 [PMID: 28846049]
  41. J Cyst Fibros. 2018 Mar;17(2):218-227 [PMID: 29311001]
  42. Paediatr Respir Rev. 2009 Dec;10(4):220-6 [PMID: 19879513]
  43. Nature. 2018 Aug;560(7718):377-381 [PMID: 30069046]
  44. JCI Insight. 2018 Jul 12;3(13): [PMID: 29997283]
  45. J Cyst Fibros. 2019 Mar;18(2):182-189 [PMID: 30030066]
  46. Cell. 1998 Dec 23;95(7):1005-15 [PMID: 9875854]
  47. J Cyst Fibros. 2018 May;17(3):316-324 [PMID: 29544685]
  48. Cell Physiol Biochem. 2017;41(6):2194-2210 [PMID: 28448979]
  49. Biomaterials. 2017 Jan;113:118-132 [PMID: 27815996]
  50. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6822-6827 [PMID: 29891677]
  51. J Clin Invest. 1999 Feb;103(3):309-12 [PMID: 9927490]
  52. Development. 2017 Mar 15;144(6):986-997 [PMID: 28292845]
  53. Respir Res. 2007 Nov 26;8:86 [PMID: 18039378]
  54. Gastroenterology. 2004 Oct;127(4):1085-95 [PMID: 15480987]
  55. Nat Rev Dis Primers. 2015 May 14;1:15010 [PMID: 27189798]
  56. Sci Transl Med. 2016 Jun 22;8(344):344ra84 [PMID: 27334259]
  57. Thorax. 2012 Jan;67(1):12-8 [PMID: 21825083]
  58. Sci Rep. 2017 Dec 21;7(1):17971 [PMID: 29269735]
  59. Nat Med. 2004 May;10(5):487-93 [PMID: 15077107]
  60. J Vis Exp. 2018 Apr 11;(134): [PMID: 29708545]
  61. Am J Respir Crit Care Med. 2018 Jan 15;197(2):214-224 [PMID: 28930490]
  62. N Engl J Med. 2010 Nov 18;363(21):1991-2003 [PMID: 21083385]
  63. Toxicology. 2010 Dec 30;278(3):311-8 [PMID: 20403407]
  64. JCI Insight. 2017 Nov 16;2(22): [PMID: 29202459]
  65. Nature. 2018 Aug;560(7718):319-324 [PMID: 30069044]
  66. Cell Stem Cell. 2017 Jan 5;20(1):9-10 [PMID: 28061355]
  67. Am J Physiol. 1999 Jan;276(1):L75-80 [PMID: 9887058]
  68. Thorax. 2006 Jul;61(7):627-35 [PMID: 16384879]
  69. Methods Mol Biol. 2011;741:87-107 [PMID: 21594780]
  70. EBioMedicine. 2014 Dec 17;2(2):147-53 [PMID: 26137539]
  71. Annu Rev Biochem. 2008;77:701-26 [PMID: 18304008]

Word Cloud

Created with Highcharts 10.0.0CFCFTRepithelialcellularCysticfibrosisdiseasemechanismsrangedevelopmentairwaymodelsorganoidorganoidspreclinicalpatientspersonalizedinheriteddisorderindividualetiologyresponsetherapeuticinterventionimpactedtransmembraneregulatormutationsgeneticmodifiersregulatesmultiplediversetissuesReviewconsolidatelatestupdatesprimarymodelsystemsrelevantdiscussconventionaltwo-dimensional2-Dcellculturesbackbonedatewellimprovedexpansionprotocolsovercomefinitesupplysourcehighlightstrategiesestablishmentthreedimensional3-Dintestinalevaluatelimitationspotentialimprovementssystemfocusingapplicationfunctionalassayspatient-derivedallowpharmacotherapyscreeningidentifyresponsivelikelywillinvaluabletoolunraveldesignnoveltreatmentsenablecliniciansprovidemanagementHumanPrimaryEpithelialCellModels:PromisingToolsEraFibrosisPersonalizedMedicinemodulatorcysticdrugmedicinesweatchloride

Similar Articles

Cited By (42)