Modulation of Bacterial sRNAs Activity by Epigenetic Modifications: Inputs from the Eukaryotic miRNAs.

Brice Felden, David Gilot
Author Information
  1. Brice Felden: University of Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, F-35043 Rennes, France. brice.felden@univ-rennes1.fr. ORCID
  2. David Gilot: CNRS UMR 6290, IGDR, University of Rennes 1, F-35043 Rennes, France. david.gilot@univ-rennes1.fr. ORCID

Abstract

Trans-encoded bacterial regulatory RNAs (sRNAs) are functional analogues of eukaryotic microRNAs (miRNAs). These RNA classes act by base-pairing complementarity with their RNA targets to modulate gene expression (transcription, half-life and/or translation). Based on base-pairing, algorithms predict binding and the impact of small RNAs on targeted-RNAs expression and fate. However, other actors are involved such as RNA binding proteins and epigenetic modifications of the targeted and small RNAs. Post-transcriptional base modifications are widespread in all living organisms where they lower undesired RNA folds through conformation adjustments and influence RNA pairing and stability, especially if remodeling their ends. In bacteria, sRNAs possess RNA modifications either internally (methylation, pseudouridinylation) or at their ends. Nicotinamide adenine dinucleotide were detected at 5'-ends, and polyadenylation can occur at 3'-ends. Eukaryotic miRNAs possess ⁶-methyladenosine (m⁶A), A editing into I, and non-templated addition of uridines at their 3'-ends. Biological functions and enzymes involved in those sRNA and micro RNA epigenetic modifications, when known, are presented and challenged.

Keywords

References

  1. J Biol Chem. 1960 May;235:1488-98 [PMID: 13811056]
  2. J Mol Biol. 2004 May 28;339(2):337-53 [PMID: 15136037]
  3. Nat Struct Mol Biol. 2006 Jan;13(1):13-21 [PMID: 16369484]
  4. Genes Dev. 2007 Jan 1;21(1):11-42 [PMID: 17210785]
  5. Science. 2007 Feb 23;315(5815):1137-40 [PMID: 17322061]
  6. J Mol Biol. 2008 Jan 4;375(1):291-300 [PMID: 18021804]
  7. PLoS Genet. 2007 Dec;3(12):e215 [PMID: 18085825]
  8. RNA. 2008 Aug;14(8):1539-49 [PMID: 18566191]
  9. Nature. 2008 Sep 4;455(7209):64-71 [PMID: 18668037]
  10. Mol Cell Biol. 2008 Nov;28(22):6773-84 [PMID: 18794355]
  11. Cell. 2009 Feb 20;136(4):615-28 [PMID: 19239884]
  12. Genes Dev. 2009 Feb 15;23(4):433-8 [PMID: 19240131]
  13. Nat Cell Biol. 2009 Mar;11(3):228-34 [PMID: 19255566]
  14. Nature. 2009 Jul 23;460(7254):479-86 [PMID: 19536157]
  15. Nat Struct Mol Biol. 2009 Oct;16(10):1021-5 [PMID: 19713958]
  16. Nature. 2009 Oct 8;461(7265):754-61 [PMID: 19812667]
  17. Nat Chem Biol. 2009 Dec;5(12):879-81 [PMID: 19820715]
  18. Curr Biol. 2010 Feb 23;20(4):367-73 [PMID: 20096582]
  19. Nature. 2011 May 5;473(7345):105-8 [PMID: 21478871]
  20. Appl Microbiol Biotechnol. 2011 Jul;91(1):63-79 [PMID: 21607656]
  21. Microbiol Mol Biol Rev. 2011 Jun;75(2):286-300 [PMID: 21646430]
  22. Curr Top Microbiol Immunol. 2012;353:91-109 [PMID: 21761289]
  23. Cell. 2011 Aug 5;146(3):353-8 [PMID: 21802130]
  24. Nat Chem Biol. 2011 Oct 16;7(12):885-7 [PMID: 22002720]
  25. Nat Struct Mol Biol. 2011 Dec 11;19(1):84-9 [PMID: 22157959]
  26. Cell Res. 2012 Apr;22(4):624-36 [PMID: 22410795]
  27. PLoS Genet. 2012;8(3):e1002578 [PMID: 22457636]
  28. Cell Rep. 2012 Apr 19;1(4):385-91 [PMID: 22570807]
  29. Nature. 2012 Apr 29;485(7397):201-6 [PMID: 22575960]
  30. Cell. 2012 Jun 22;149(7):1635-46 [PMID: 22608085]
  31. Cell. 2012 Oct 26;151(3):521-32 [PMID: 23063654]
  32. Mol Cell. 2012 Dec 14;48(5):760-70 [PMID: 23142080]
  33. Mol Cell. 2013 Jan 10;49(1):18-29 [PMID: 23177736]
  34. PLoS Genet. 2012;8(11):e1003105 [PMID: 23209448]
  35. Nat Methods. 2013 Mar;10(3):253-5 [PMID: 23334102]
  36. Nature. 2013 May 9;497(7448):244-8 [PMID: 23594738]
  37. Cell. 2013 Apr 25;153(3):516-9 [PMID: 23622238]
  38. Cell. 2013 Apr 25;153(3):654-65 [PMID: 23622248]
  39. Curr Microbiol. 2013 Nov;67(5):609-13 [PMID: 23783561]
  40. Nat Rev Mol Cell Biol. 2013 Aug;14(8):475-88 [PMID: 23800994]
  41. PLoS Genet. 2013 Jun;9(6):e1003602 [PMID: 23825970]
  42. RNA. 2013 Aug;19(8):1038-53 [PMID: 23861536]
  43. Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 [PMID: 24275495]
  44. Nature. 2014 Jan 16;505(7483):344-52 [PMID: 24429633]
  45. Mol Cell. 2014 Mar 20;53(6):1044-52 [PMID: 24582499]
  46. Cell. 2014 Aug 28;158(5):980-987 [PMID: 25171402]
  47. Nature. 2015 Mar 19;519(7543):374-7 [PMID: 25533955]
  48. Plant Biotechnol J. 2015 Sep;13(7):915-26 [PMID: 25600074]
  49. Nature. 2015 Mar 26;519(7544):482-5 [PMID: 25799998]
  50. Sci Rep. 2015 May 11;5:10080 [PMID: 25962117]
  51. Cell. 2015 Jun 4;161(6):1388-99 [PMID: 26046440]
  52. Nucleic Acids Res. 2015 Jul 27;43(13):6557-67 [PMID: 26068471]
  53. Elife. 2015 Aug 12;4:null [PMID: 26267216]
  54. Adv Genet. 2015;90:133-208 [PMID: 26296935]
  55. Nucleic Acids Res. 2016 Jan 4;44(D1):D259-65 [PMID: 26464443]
  56. Nat Rev Mol Cell Biol. 2016 Feb;17(2):83-96 [PMID: 26648264]
  57. Curr Opin Microbiol. 2016 Apr;30:44-49 [PMID: 26779928]
  58. Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1881-9 [PMID: 26976605]
  59. Sci Rep. 2016 Mar 16;6:23226 [PMID: 26980570]
  60. Mol Cells. 2016 May 31;39(5):375-81 [PMID: 27117456]
  61. Nat Genet. 2016 Dec;48(12):1517-1526 [PMID: 27776116]
  62. Genome Res. 2017 Mar;27(3):462-470 [PMID: 28031250]
  63. Nat Rev Genet. 2017 May;18(5):275-291 [PMID: 28216634]
  64. RNA. 2017 Jun;23(6):882-891 [PMID: 28351886]
  65. Trends Genet. 2017 Jun;33(6):380-390 [PMID: 28499622]
  66. Trends Biochem Sci. 2017 Aug;42(8):669-680 [PMID: 28629612]
  67. Genome Res. 2017 Oct;27(10):1696-1703 [PMID: 28864459]
  68. Nat Struct Mol Biol. 2017 Oct;24(10):870-878 [PMID: 28869609]
  69. Wiley Interdiscip Rev RNA. 2018 Jan;9(1): [PMID: 28984054]
  70. Nat Commun. 2017 Nov 2;8(1):1255 [PMID: 29093448]
  71. Nucleic Acids Res. 2018 Jan 9;46(1):71-82 [PMID: 29165639]
  72. Genome Res. 2018 Jan;28(1):132-143 [PMID: 29233923]
  73. J Bacteriol. 2018 Apr 9;200(9):null [PMID: 29463600]
  74. Nat Cell Biol. 2018 Mar;20(3):285-295 [PMID: 29476152]
  75. Antimicrob Agents Chemother. 2018 Apr 26;62(5): [PMID: 29530859]
  76. Cell. 2018 Mar 22;173(1):20-51 [PMID: 29570994]
  77. Wiley Interdiscip Rev RNA. 2018 Jul;9(4):e1475 [PMID: 29633565]
  78. Genomics Proteomics Bioinformatics. 2018 Apr;16(2):85-98 [PMID: 29709557]
  79. Cell. 2018 Jul 12;174(2):350-362.e17 [PMID: 29887379]
  80. Microbiol Spectr. 2018 May;6(3): [PMID: 29916347]
  81. Front Mol Biosci. 2018 Jul 13;5:61 [PMID: 30057901]
  82. RNA. 2018 Nov;24(11):1496-1511 [PMID: 30061117]
  83. Mol Cell. 2018 Sep 20;71(6):973-985.e5 [PMID: 30197295]
  84. Annu Rev Microbiol. 2018 Sep 8;72:141-161 [PMID: 30200848]
  85. Microb Pathog. 2018 Dec;125:196-204 [PMID: 30227229]
  86. Curr Biol. 2018 Oct 22;28(20):3288-3295.e5 [PMID: 30318349]
  87. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3971-5 [PMID: 4372599]
  88. Nature. 1995 Mar 9;374(6518):180-3 [PMID: 7533264]
  89. J Biol Chem. 1994 Jul 1;269(26):17697-704 [PMID: 8021282]
  90. Annu Rev Biochem. 1997;66:173-97 [PMID: 9242905]
  91. EMBO J. 1998 Jun 1;17(11):3188-96 [PMID: 9606200]

Word Cloud

Created with Highcharts 10.0.0RNAmodificationsRNAsmiRNAssRNAsbacterialregulatorybase-pairingexpressionbindingsmallinvolvedepigeneticendspossessmethylation3'-endsEukaryoticeditingTrans-encodedfunctionalanalogueseukaryoticmicroRNAsclassesactcomplementaritytargetsmodulategenetranscriptionhalf-lifeand/ortranslationBasedalgorithmspredictimpacttargeted-RNAsfateHoweveractorsproteinstargetedPost-transcriptionalbasewidespreadlivingorganismslowerundesiredfoldsconformationadjustmentsinfluencepairingstabilityespeciallyremodelingbacteriaeitherinternallypseudouridinylationNicotinamideadeninedinucleotidedetected5'-endspolyadenylationcanoccur⁶-methyladenosinem⁶Anon-templatedadditionuridinesBiologicalfunctionsenzymessRNAmicroknownpresentedchallengedModulationBacterialActivityEpigeneticModifications:Inputsbiogenesisepigeneticstrans-acting

Similar Articles

Cited By