Delaying latency to hyperbaric oxygen-induced CNS oxygen toxicity seizures by combinations of exogenous ketone supplements.

Csilla Ari, Andrew P Koutnik, Janine DeBlasi, Carol Landon, Christopher Q Rogers, John Vallas, Sahil Bharwani, Michelle Puchowicz, Ilya Bederman, David M Diamond, Mark S Kindy, Jay B Dean, Dominic P D Agostino
Author Information
  1. Csilla Ari: Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, Florida.
  2. Andrew P Koutnik: Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, University of South Florida, Tampa, Florida.
  3. Janine DeBlasi: Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, University of South Florida, Tampa, Florida.
  4. Carol Landon: Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, Florida.
  5. Christopher Q Rogers: Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, University of South Florida, Tampa, Florida.
  6. John Vallas: Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, Florida.
  7. Sahil Bharwani: Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, Florida.
  8. Michelle Puchowicz: Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.
  9. Ilya Bederman: Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio.
  10. David M Diamond: Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, Florida.
  11. Mark S Kindy: Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida.
  12. Jay B Dean: Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, Florida.
  13. Dominic P D Agostino: Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, University of South Florida, Tampa, Florida.

Abstract

Central nervous system oxygen toxicity (CNS-OT) manifests as tonic-clonic seizures and is a limitation of hyperbaric oxygen therapy (HBOT), as well as of recreational and technical diving associated with elevated partial pressure of oxygen. A previous study showed that ketone ester (1,3-butanediol acetoacetate diester, KE) administration delayed latency to seizures (LS) in 3-month-old Sprague-Dawley (SD) rats. This study explores the effect of exogenous ketone supplements in additional dosages and formulations on CNS-OT seizures in 18 months old SD rats, an age group correlating to human middle age. Ketogenic agents were given orally 60 min prior to exposure to hyperbaric oxygen and included control (water), KE (10 g/kg), KE/2 (KE 5 g/kg + water 5 g/kg), KE + medium-chain triglycerides (KE 5 g/kg + MCT 5 g/kg), and ketone salt (Na /K βHB, KS) + MCT (KS 5 g/kg + MCT 5 g/kg). Rats were exposed to 100% oxygen at 5 atmospheres absolute (ATA). Upon seizure presentation (tonic-clonic movements) experiments were immediately terminated and blood was tested for glucose and D-beta-hydroxybutyrate (D-βHB) levels. While blood D-βHB levels were significantly elevated post-dive in all treatment groups, LS was significantly delayed only in KE (P = 0.0003), KE/2 (P = 0.023), and KE + MCT (P = 0.028) groups. In these groups, the severity of seizures appeared to be reduced, although these changes were significant only in KE-treated animals (P = 0.015). Acetoacetate (AcAc) levels were also significantly elevated in KE-treated animals. The LS in 18-month-old rats was delayed by 179% in KE, 219% in KE + MCT, and 55% in KE/2 groups, while only by 29% in KS + MCT. In conclusion, KE supplementation given alone and in combination with MCT elevated both βHB and AcAc, and delayed CNS-OT seizures.

Keywords

References

  1. Epilepsia. 2008 Nov;49 Suppl 8:127-33 [PMID: 19049610]
  2. Annu Rev Nutr. 2006;26:1-22 [PMID: 16848698]
  3. Physiol Rep. 2019 Jan;7(1):e13961 [PMID: 30604923]
  4. Aviat Space Environ Med. 1987 Mar;58(3):224-6 [PMID: 3579804]
  5. Mol Aspects Med. 2011 Aug;32(4-6):247-57 [PMID: 22024249]
  6. J Neurochem. 2012 Apr;121(1):28-35 [PMID: 22268909]
  7. Eur J Pharmacol. 1991 Sep 17;202(2):171-5 [PMID: 1802744]
  8. Epilepsia. 2008 Nov;49 Suppl 8:83-6 [PMID: 19049597]
  9. Neuroscience. 2007 Mar 2;145(1):256-64 [PMID: 17240074]
  10. Nutr Metab (Lond). 2016 Feb 04;13:9 [PMID: 26855664]
  11. Regul Toxicol Pharmacol. 2012 Aug;63(3):401-8 [PMID: 22561291]
  12. Am J Physiol. 1995 Apr;268(4 Pt 1):E660-7 [PMID: 7733265]
  13. J Neurophysiol. 2007 Aug;98(2):1030-41 [PMID: 17553943]
  14. Biochem J. 1971 Mar;122(1):13-8 [PMID: 5124783]
  15. Toxicol Appl Pharmacol. 1998 Aug;151(2):222-8 [PMID: 9707498]
  16. Neurobiol Dis. 2010 Oct;40(1):238-44 [PMID: 20594978]
  17. Nutr Metab (Lond). 2004 Oct 19;1(1):11 [PMID: 15507133]
  18. Brain Res Rev. 2009 Mar;59(2):293-315 [PMID: 18845187]
  19. Cold Spring Harb Perspect Med. 2016 May 02;6(5): [PMID: 26801895]
  20. J Neurochem. 2016 Dec;139(5):769-781 [PMID: 27739595]
  21. Front Mol Neurosci. 2017 Jul 25;10:235 [PMID: 28790891]
  22. Epilepsia. 2000 Aug;41(8):933-40 [PMID: 10961617]
  23. Epilepsia. 2007 Jan;48(1):43-58 [PMID: 17241207]
  24. Regul Toxicol Pharmacol. 2012 Jul;63(2):196-208 [PMID: 22504461]
  25. Neuropharmacology. 2018 May 1;133:233-241 [PMID: 29325899]
  26. Epilepsia. 2002 Apr;43(4):358-61 [PMID: 11952765]
  27. Epilepsia. 1997 Jul;38(7):750-8 [PMID: 9579901]
  28. Brain Res. 1997 Jun 27;761(1):146-50 [PMID: 9247077]
  29. Annu Rev Nutr. 1997;17:559-96 [PMID: 9240940]
  30. Am J Physiol Regul Integr Comp Physiol. 2013 May 15;304(10):R829-36 [PMID: 23552496]
  31. Prostaglandins Leukot Essent Fatty Acids. 2004 Mar;70(3):309-19 [PMID: 14769489]
  32. Epilepsia. 1999 Feb;40(2):138-43 [PMID: 9952258]
  33. Am J Physiol. 1995 Jul;269(1 Pt 1):E67-75 [PMID: 7631780]
  34. Adv Pediatr. 2010;57(1):315-29 [PMID: 21056745]
  35. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003 Jun;38(6):1087-97 [PMID: 12774911]
  36. J Neurochem. 2010 Jul;114(1):130-41 [PMID: 20374433]
  37. Epilepsy Behav. 2010 Dec;19(4):575-9 [PMID: 20937568]
  38. J Cereb Blood Flow Metab. 2008 Jan;28(1):1-16 [PMID: 17684514]
  39. Chin Med J (Engl). 2006 Nov 20;119(22):1925-9 [PMID: 17134593]
  40. Neuroreport. 1999 May 14;10(7):1517-22 [PMID: 10380973]
  41. J Nutr Biochem. 2000 May;11(5):281-7 [PMID: 10876102]
  42. Lancet Neurol. 2018 Jan;17(1):84-93 [PMID: 29263011]

Grants

  1. R01 MH109655/NIMH NIH HHS
  2. /VA
  3. R01 MH109655-03/NIH HHS

MeSH Term

Animals
Central Nervous System
Hyperbaric Oxygenation
Ketones
Male
Oxygen
Rats
Rats, Sprague-Dawley
Reaction Time
Seizures

Chemicals

Ketones
Oxygen

Word Cloud

Created with Highcharts 10.0.0oxygenseizuresKEketonehyperbaricelevateddelayedgroupsP = 0toxicityCNS-OTLSratsKE/25 g/kglevelssignificantlytonic-clonicstudyesterlatencySDexogenoussupplementsagegiven5 g/kg + MCTβHBKSbloodD-βHBKE + MCTKE-treatedanimalsAcetoacetateAcAcCentralnervoussystemmanifestslimitationtherapyHBOTwellrecreationaltechnicaldivingassociatedpartialpressurepreviousshowed13-butanediolacetoacetatediesteradministration3-month-oldSprague-Dawleyexploreseffectadditionaldosagesformulations18 monthsoldgroupcorrelatinghumanmiddleKetogenicagentsorally60 minpriorexposureincludedcontrolwater10 g/kg5 g/kg + waterKE + medium-chaintriglyceridessaltNa/K + MCTRatsexposed100%5atmospheresabsoluteATAUponseizurepresentationmovementsexperimentsimmediatelyterminatedtestedglucoseD-beta-hydroxybutyratepost-divetreatment0003023028severityappearedreducedalthoughchangessignificant015also18-month-old179%219%55%29%KS + MCTconclusionsupplementationalonecombinationMCTDelayingoxygen-inducedCNScombinationsbeta-hydroxybutyrateketogenicdiet

Similar Articles

Cited By