Human-like NSG mouse glycoproteins sialylation pattern changes the phenotype of human lymphocytes and sensitivity to HIV-1 infection.

Raghubendra Singh Dagur, Amanda Branch-Woods, Saumi Mathews, Poonam S Joshi, Rolen M Quadros, Donald W Harms, Yan Cheng, Shana M Miles, Samuel J Pirruccello, Channabasavaiah B Gurumurthy, Santhi Gorantla, Larisa Y Poluektova
Author Information
  1. Raghubendra Singh Dagur: Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  2. Amanda Branch-Woods: Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  3. Saumi Mathews: Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  4. Poonam S Joshi: Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA.
  5. Rolen M Quadros: Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA.
  6. Donald W Harms: Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA.
  7. Yan Cheng: Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  8. Shana M Miles: Bellevue Medical Center, Bellevue, NE, USA.
  9. Samuel J Pirruccello: Department of Pathology and Microbiology, Omaha, NE, USA.
  10. Channabasavaiah B Gurumurthy: Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA.
  11. Santhi Gorantla: Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  12. Larisa Y Poluektova: Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA. lpoluekt@unmc.edu. ORCID

Abstract

BACKGROUND: The use of immunodeficient mice transplanted with human hematopoietic stem cells is an accepted approach to study human-specific infectious diseases such as HIV-1 and to investigate multiple aspects of human immune system development. However, mouse and human are different in sialylation patterns of proteins due to evolutionary mutations of the CMP-N-acetylneuraminic acid hydroxylase (CMAH) gene that prevent formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. How changes in the mouse glycoproteins' chemistry affect phenotype and function of transplanted human hematopoietic stem cells and mature human immune cells in the course of HIV-1 infection are not known.
RESULTS: We mutated mouse CMAH in the NOD/scid-IL2Rγ (NSG) mouse strain, which is widely used for the transplantation of human cells, using the CRISPR/Cas9 system. The new strain provides a better environment for human immune cells. Transplantation of human hematopoietic stem cells leads to broad B cells repertoire, higher sensitivity to HIV-1 infection, and enhanced proliferation of transplanted peripheral blood lymphocytes. The mice showed no effect on the clearance of human immunoglobulins and enhanced transduction efficiency of recombinant adeno-associated viral vector rAAV2/DJ8.
CONCLUSION: NSG-cmah mice expand the mouse models suitable for human cells transplantation, and this new model has advantages in generating a human B cell repertoire. This strain is suitable to study different aspects of the human immune system development, provide advantages in patient-derived tissue and cell transplantation, and could allow studies of viral vectors and infectious agents that are sensitive to human-like sialylation of mouse glycoproteins.

Keywords

References

  1. PLoS Pathog. 2014 Jul 17;10(7):e1004146 [PMID: 25033082]
  2. Pathog Dis. 2017 Jul 31;75(5): [PMID: 28449072]
  3. J Biol Chem. 2004 Oct 8;279(41):43117-25 [PMID: 15292262]
  4. Glycobiology. 2016 Nov;26(11):1140-1150 [PMID: 27567275]
  5. Stem Cells. 2010 Feb;28(2):258-67 [PMID: 19890979]
  6. Arthritis Res Ther. 2017 May 15;19(1):91 [PMID: 28506291]
  7. Hematology. 2007 Aug;12(4):325-30 [PMID: 17654060]
  8. J Virol. 2006 Nov;80(22):11393-7 [PMID: 16943302]
  9. Front Immunol. 2017 Mar 23;8:314 [PMID: 28386256]
  10. J Virol. 2014 Aug;88(15):8445-56 [PMID: 24829344]
  11. Mol Cell Biol. 2007 Jun;27(12):4340-6 [PMID: 17420276]
  12. Biol Open. 2018 Feb 13;7(2): [PMID: 29361613]
  13. PLoS One. 2012;7(9):e45821 [PMID: 23029261]
  14. Front Immunol. 2012 Jan 11;2:96 [PMID: 22566885]
  15. J Virol. 2014 Mar;88(5):2991-3003 [PMID: 24371066]
  16. Eur J Immunol. 2014 Apr;44(4):970-82 [PMID: 24375379]
  17. Nat Commun. 2016 Apr 04;7:11187 [PMID: 27041489]
  18. Mol Cell Biol. 2007 Apr;27(8):3008-22 [PMID: 17296732]
  19. J Biol Chem. 2003 Feb 14;278(7):4597-602 [PMID: 12464602]
  20. Vaccine. 2012 Jun 22;30(30):4409-13 [PMID: 22575168]
  21. Angew Chem Int Ed Engl. 2016 Feb 12;55(7):2361-7 [PMID: 26756880]
  22. J Exp Med. 2009 Jan 16;206(1):139-51 [PMID: 19103878]
  23. Sci Immunol. 2016 Dec;1(6): [PMID: 28361127]
  24. J Biol Chem. 2011 Feb 25;286(8):5935-41 [PMID: 21173156]
  25. Curr Opin HIV AIDS. 2018 Mar;13(2):143-151 [PMID: 29194124]
  26. Immunol Cell Biol. 2017 Apr;95(4):408-415 [PMID: 27874015]
  27. Immunogenetics. 2014 Nov;66(11):671-4 [PMID: 25124893]
  28. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12045-50 [PMID: 14523234]
  29. Biotechnol Genet Eng Rev. 2012;28:147-75 [PMID: 22616486]
  30. Blood. 2005 Sep 1;106(5):1565-73 [PMID: 15920010]
  31. Glycobiology. 2007 May;17(5):23R-34R [PMID: 17237137]
  32. Blood. 2002 Nov 1;100(9):3175-82 [PMID: 12384415]
  33. Nature. 2014 Feb 20;506(7488):382-6 [PMID: 24390344]
  34. Nat Commun. 2017 Mar 28;8:14954 [PMID: 28348411]
  35. Immunology. 2011 Jan;132(1):18-26 [PMID: 21070233]
  36. J Virol. 2015 May;89(10):5687-700 [PMID: 25822027]
  37. Curr Opin HIV AIDS. 2017 May;12(3):285-293 [PMID: 28422792]
  38. Ann N Y Acad Sci. 2012 Apr;1253:16-36 [PMID: 22524423]
  39. Curr Opin Struct Biol. 1996 Oct;6(5):679-91 [PMID: 8913692]
  40. J Immunol. 2012 Sep 15;189(6):3221-30 [PMID: 22865917]
  41. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):287-92 [PMID: 1478464]
  42. Int Immunol. 2001 Dec;13(12):1551-9 [PMID: 11717196]
  43. J Virol. 2016 May 12;90(11):5219-5230 [PMID: 26962225]
  44. Curr Opin Struct Biol. 2011 Oct;21(5):610-8 [PMID: 21917445]
  45. J Biol Chem. 2015 Dec 11;290(50):30066-77 [PMID: 26507663]
  46. J Virol. 2006 Sep;80(18):8961-9 [PMID: 16940508]
  47. Semin Immunol. 2006 Feb;18(1):56-66 [PMID: 16337808]
  48. Ann N Y Acad Sci. 2012 Apr;1253:37-48 [PMID: 22288608]
  49. Proc Natl Acad Sci U S A. 2010 May 11;107 Suppl 2:8939-46 [PMID: 20445087]
  50. Curr Protoc Hum Genet. 2014 Oct 01;83:15.7.1-27 [PMID: 25271839]
  51. Curr Top Microbiol Immunol. 2008;324:25-51 [PMID: 18481451]
  52. FASEB J. 2018 Mar;32(3):1537-1549 [PMID: 29146734]
  53. Immunology. 2018 May;154(1):50-61 [PMID: 29446074]

Grants

  1. R24 OD018546/NIH HHS

MeSH Term

Animals
CRISPR-Cas Systems
Disease Models, Animal
Genetic Loci
Glycoproteins
HIV Infections
HIV-1
Hematopoietic Stem Cell Transplantation
Hematopoietic Stem Cells
Immune System
Immunophenotyping
Leukocytes, Mononuclear
Lymphocytes
Mice
Mice, Knockout
Phenotype

Chemicals

Glycoproteins

Word Cloud

Created with Highcharts 10.0.0humancellsmouseHIV-1micestemimmuneacidtransplantedhematopoieticsystemsialylationinfectionstraintransplantationstudyinfectiousaspectsdevelopmentdifferentCMP-N-acetylneuraminichydroxylaseCMAHchangesphenotypeNSGnewBrepertoiresensitivityenhancedlymphocytesviralsuitableadvantagescellglycoproteinsBACKGROUND:useimmunodeficientacceptedapproachhuman-specificdiseasesinvestigatemultipleHoweverpatternsproteinsdueevolutionarymutationsgenepreventformationN-glycolylneuraminicN-acetylneuraminicglycoproteins'chemistryaffectfunctionmaturecourseknownRESULTS:mutatedNOD/scid-IL2RγwidelyusedusingCRISPR/Cas9providesbetterenvironmentTransplantationleadsbroadhigherproliferationperipheralbloodshowedeffectclearanceimmunoglobulinstransductionefficiencyrecombinantadeno-associatedvectorrAAV2/DJ8CONCLUSION:NSG-cmahexpandmodelsmodelgeneratingprovidepatient-derivedtissueallowstudiesvectorsagentssensitivehuman-likeHuman-likepatternHematopoieticNOD/scid-IL2Rγc−/−

Similar Articles

Cited By (6)