Neuroanatomy- and Pathology-Based Functional Examinations of Experimental Stroke in Rats: Development and Validation of a New Behavioral Scoring System.

Shin-Joe Yeh, Sung-Chun Tang, Li-Kai Tsai, Jiann-Shing Jeng, Chi-Ling Chen, Sung-Tsang Hsieh
Author Information
  1. Shin-Joe Yeh: Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
  2. Sung-Chun Tang: Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan.
  3. Li-Kai Tsai: Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan.
  4. Jiann-Shing Jeng: Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan.
  5. Chi-Ling Chen: Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
  6. Sung-Tsang Hsieh: Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.

Abstract

In experimental stroke studies, a neuroanatomy-based functional examination of behaviors is critical to predict the pathological extent of infarcts because brain-imaging studies are not always available. However, there is a lack of systematic studies to examine the efficiency of a behavioral test for this purpose. Our work aimed to design a new score for this goal in stroke rats, by simplifying the Garcia score (with subscore 1-6) and adding circling as subscore 7. MRI and 2,3,5-triphenyltetrazolium chloride staining were used to determine the pathological extent after transient middle cerebral artery occlusion. The modified summations of subscores were designed according to the predictability of each subscore for locations and sizes of infarcts in one group of stroke rats, and were validated in another group. The original Garcia score was able to predict the pathological extent of edema-adjusted infarct size ≥30%, and the summation of subscore 4, 6, and 7 (4: climbing, 6: vibrissae sensation, 7: circling) also could predict it well. The original Garcia score failed to predict infarct at the primary motor cortex, while the summation of subscore 4, 6, and 7 potentially could predict not only the primary motor cortex, but also the forelimb, hindlimb, and barrel field regions of the primary sensory cortex. Accordingly, this neuroanatomy-correlated functional assessment system composed of subscore 4, 6, and 7 was proposed, with less examination time and better inter-rater reliability than the original Garcia score. In summary, this new scoring system, summation (4,6,7) score, examined motor and sensory functions based on neuroanatomical involvement, having the potential to predict the pathological extent and specific relevant brain areas of infarcts, respectively.

Keywords

References

  1. Magn Reson Imaging. 1999 May;17(4):593-601 [PMID: 10231186]
  2. J Cereb Blood Flow Metab. 2000 Mar;20(3):563-82 [PMID: 10724121]
  3. Brain Res. 2000 Apr 28;863(1-2):94-105 [PMID: 10773197]
  4. Stroke. 2000 Aug;31(8):1939-44 [PMID: 10926961]
  5. Stroke. 2003 Jan;34(1):214-23 [PMID: 12511777]
  6. Brain Res Bull. 2003 Feb 15;59(6):459-66 [PMID: 12576143]
  7. Stroke. 2003 Jun;34(6):1501-6 [PMID: 12750539]
  8. Toxicol Pathol. 2004 Jul-Aug;32(4):448-66 [PMID: 15204968]
  9. Neuroscience. 2004;127(2):269-75 [PMID: 15262318]
  10. Brain Res. 2006 Oct 20;1116(1):159-65 [PMID: 16952339]
  11. Anesthesiology. 2007 Jan;106(1):92-9; discussion 8-10 [PMID: 17197850]
  12. PLoS One. 2009;4(3):e4764 [PMID: 19274095]
  13. Brain Res. 2009 Jul 14;1280:148-57 [PMID: 19464275]
  14. BMC Neurosci. 2009 Aug 25;10:103 [PMID: 19706182]
  15. Br J Pharmacol. 2011 Oct;164(4):1062-78 [PMID: 21457227]
  16. Stroke. 2011 Oct;42(10):2932-9 [PMID: 21836090]
  17. Biochem Med (Zagreb). 2012;22(3):276-82 [PMID: 23092060]
  18. J Cereb Blood Flow Metab. 2013 Feb;33(2):300-10 [PMID: 23211962]
  19. J Cereb Blood Flow Metab. 2013 Mar;33(3):330-8 [PMID: 23232947]
  20. Stroke Res Treat. 2013;2013:410972 [PMID: 23533959]
  21. Biol Pharm Bull. 2014;37(5):834-9 [PMID: 24790005]
  22. Brain Res. 2014 Oct 24;1586:173-83 [PMID: 25124744]
  23. Neural Regen Res. 2014 Apr 1;9(7):757-8 [PMID: 25206884]
  24. Drug Des Devel Ther. 2015 Jul 02;9:3445-54 [PMID: 26170628]
  25. Stroke. 1989 Jan;20(1):84-91 [PMID: 2643202]
  26. J Neurol Sci. 2016 May 15;364:136-40 [PMID: 27084232]
  27. J Neuroinflammation. 2016 May 24;13(1):119 [PMID: 27220420]
  28. Exp Neurol. 2017 Feb;288:25-37 [PMID: 27794423]
  29. Brain Res. 2017 Jun 15;1665:88-94 [PMID: 28435084]
  30. Exp Neurol. 2017 Nov;297:1-13 [PMID: 28602833]
  31. Brain Res. 2018 Apr 15;1685:9-18 [PMID: 29425910]
  32. Stroke. 2018 Mar;49(3):718-726 [PMID: 29440474]
  33. BMC Neurosci. 2018 Apr 19;19(1):24 [PMID: 29673328]
  34. AJNR Am J Neuroradiol. 1987 Nov-Dec;8(6):1057-62 [PMID: 3120532]
  35. Stroke. 1986 May-Jun;17(3):472-6 [PMID: 3715945]
  36. Stroke. 1995 Dec;26(12):2313-9; discussion 2319-20 [PMID: 7491657]
  37. Stroke. 1995 Apr;26(4):627-34; discussion 635 [PMID: 7709410]
  38. Brain Res. 1995 Mar 13;674(1):55-62 [PMID: 7773695]
  39. Stroke. 1993 Jan;24(1):117-21 [PMID: 8418534]
  40. Stroke. 1993 Jun;24(6):889-95 [PMID: 8506561]
  41. J Cereb Blood Flow Metab. 1996 Mar;16(2):195-201 [PMID: 8594050]
  42. J Cereb Blood Flow Metab. 1996 Sep;16(5):973-80 [PMID: 8784242]
  43. Magn Reson Imaging. 1997;15(2):263-5 [PMID: 9106155]
  44. Stroke. 1997 Oct;28(10):2060-5; discussion 2066 [PMID: 9341719]
  45. J Neurol Sci. 1997 Dec 9;153(1):8-11 [PMID: 9455971]
  46. Stroke. 1998 Oct;29(10):2162-70 [PMID: 9756599]

Word Cloud

Created with Highcharts 10.0.0scorepredictsubscore7strokepathologicalextentGarcia46studiesfunctionalinfarctscirclingoriginalinfarctsummationprimarymotorcortexexaminationnewratsgroupsizealsosensorysystemexperimentalneuroanatomy-basedbehaviorscriticalbrain-imagingalwaysavailableHoweverlacksystematicexamineefficiencybehavioraltestpurposeworkaimeddesigngoalsimplifying1-6addingMRI235-triphenyltetrazoliumchloridestaininguseddeterminetransientmiddlecerebralarteryocclusionmodifiedsummationssubscoresdesignedaccordingpredictabilitylocationssizesonevalidatedanotherableedema-adjusted≥30%4:climbing6:vibrissaesensation7:wellfailedpotentiallyforelimbhindlimbbarrelfieldregionsAccordinglyneuroanatomy-correlatedassessmentcomposedproposedlesstimebetterinter-raterreliabilitysummaryscoringexaminedfunctionsbasedneuroanatomicalinvolvementpotentialspecificrelevantbrainareasrespectivelyNeuroanatomy-Pathology-BasedFunctionalExaminationsExperimentalStrokeRats:DevelopmentValidationNewBehavioralScoringSystemexaminationsgarcianeuroanatomy

Similar Articles

Cited By