Modeling the Role of the Microbiome in Evolution.

Saúl Huitzil, Santiago Sandoval-Motta, Alejandro Frank, Maximino Aldana
Author Information
  1. Saúl Huitzil: Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
  2. Santiago Sandoval-Motta: Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.
  3. Alejandro Frank: Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.
  4. Maximino Aldana: Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.

Abstract

There is undeniable evidence showing that bacteria have strongly influenced the evolution and biological functions of multicellular organisms. It has been hypothesized that many host-microbial interactions have emerged so as to increase the adaptive fitness of the (the host plus its microbiota). Although this association has been corroborated for many specific cases, general mechanisms explaining the role of the microbiota in the evolution of the host are yet to be understood. Here we present an evolutionary model in which a network representing the host adapts in order to perform a predefined function. During its adaptation, the host network (HN) can interact with other networks representing its microbiota. We show that this interaction greatly accelerates and improves the adaptability of the HN without decreasing the adaptation of the microbial networks. Furthermore, the adaptation of the HN to perform several functions is possible only when it interacts with many different bacterial networks in a specialized way (each bacterial network participating in the adaptation of one function). Disrupting these interactions often leads to non-adaptive states, reminiscent of dysbiosis, where none of the networks the holobiont consists of can perform their respective functions. By considering the holobiont as a unit of selection and focusing on the adaptation of the host to predefined but arbitrary functions, our model predicts the need for specialized diversity in the microbiota. This structural and dynamical complexity in the holobiont facilitates its adaptation, whereas a homogeneous (non-specialized) microbiota is inconsequential or even detrimental to the holobiont's evolution. To our knowledge, this is the first model in which symbiotic interactions, diversity, specialization and dysbiosis in an ecosystem emerge as a result of coevolution. It also helps us understand the emergence of complex organisms, as they adapt more easily to perform multiple tasks than non-complex ones.

Keywords

References

  1. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10746-51 [PMID: 10485897]
  2. Science. 2001 Feb 2;291(5505):881-4 [PMID: 11157169]
  3. J Theor Biol. 1967 Mar;14(3):255-74 [PMID: 11541392]
  4. J Theor Biol. 2003 Jul 7;223(1):1-18 [PMID: 12782112]
  5. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4781-6 [PMID: 15037758]
  6. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4596-601 [PMID: 15070763]
  7. Nutr Rev. 2004 Jun;62(6 Pt 1):235-42 [PMID: 15291396]
  8. Plant Cell. 2004 Nov;16(11):2923-39 [PMID: 15486106]
  9. Phys Rev Lett. 2005 Apr 1;94(12):128701 [PMID: 15903968]
  10. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13439-44 [PMID: 16155121]
  11. Cell. 2006 Feb 24;124(4):837-48 [PMID: 16497592]
  12. Dev Biol. 2006 Sep 15;297(2):374-86 [PMID: 16781702]
  13. Nature. 2006 Dec 21;444(7122):1022-3 [PMID: 17183309]
  14. J Theor Biol. 2007 Apr 7;245(3):433-48 [PMID: 17188715]
  15. J Theor Biol. 2007 Jun 7;246(3):449-60 [PMID: 17316697]
  16. Nat Rev Genet. 2007 Jun;8(6):473-9 [PMID: 17486120]
  17. PLoS One. 2008 Feb 27;3(2):e1672 [PMID: 18301750]
  18. Phys Rev Lett. 2008 Feb 8;100(5):058702 [PMID: 18352443]
  19. Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):5955-62 [PMID: 18413610]
  20. Science. 2008 Jun 20;320(5883):1647-51 [PMID: 18497261]
  21. FEMS Microbiol Rev. 2008 Aug;32(5):723-35 [PMID: 18549407]
  22. PLoS One. 2008 Jun 18;3(6):e2456 [PMID: 18560561]
  23. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20063-6 [PMID: 19104053]
  24. Nat Rev Microbiol. 2009 Jul;7(7):526-36 [PMID: 19528959]
  25. Nat Rev Microbiol. 2009 Dec;7(12):887-94 [PMID: 19898491]
  26. Curr Opin Gastroenterol. 2010 Jan;26(1):5-11 [PMID: 19901833]
  27. Trends Genet. 2010 Aug;26(8):345-52 [PMID: 20594608]
  28. Nature. 2010 Dec 16;468(7326):911-20 [PMID: 21164479]
  29. Nat Rev Microbiol. 2011 Apr;9(4):244-53 [PMID: 21407241]
  30. Nat Rev Microbiol. 2011 Apr;9(4):279-90 [PMID: 21407244]
  31. Dialogues Clin Neurosci. 2011;13(1):55-62 [PMID: 21485746]
  32. Front Microbiol. 2011 Sep 16;2:190 [PMID: 21954396]
  33. Gut. 2012 Apr;61(4):582-8 [PMID: 21994333]
  34. Science. 2011 Nov 4;334(6056):670-4 [PMID: 22053049]
  35. Nutr Clin Pract. 2012 Apr;27(2):201-14 [PMID: 22367888]
  36. Nat Rev Genet. 2012 Mar 13;13(4):260-70 [PMID: 22411464]
  37. MBio. 2012 May 02;3(2):null [PMID: 22448042]
  38. MBio. 2012 Apr 24;3(3):null [PMID: 22532558]
  39. Science. 2012 Jun 8;336(6086):1262-7 [PMID: 22674330]
  40. Science. 2012 Jun 8;336(6086):1268-73 [PMID: 22674334]
  41. Nature. 2012 Jun 13;486(7402):207-14 [PMID: 22699609]
  42. Nature. 2012 May 09;486(7402):222-7 [PMID: 22699611]
  43. Curr Biol. 2012 Oct 9;22(19):1845-50 [PMID: 22959348]
  44. PLoS Comput Biol. 2012;8(9):e1002669 [PMID: 22969419]
  45. Pharmacol Res. 2013 Mar;69(1):1-10 [PMID: 22974824]
  46. Genome Biol. 2012 Apr 16;13(9):R79 [PMID: 23013615]
  47. PLoS Comput Biol. 2012;8(10):e1002720 [PMID: 23071431]
  48. N Engl J Med. 2013 Jan 31;368(5):407-15 [PMID: 23323867]
  49. Q Rev Biol. 2012 Dec;87(4):325-41 [PMID: 23397797]
  50. Environ Microbiol Rep. 2010 Aug;2(4):500-6 [PMID: 23766221]
  51. Science. 2013 Aug 9;341(6146):667-9 [PMID: 23868918]
  52. MBio. 2013 Nov 05;4(6):e00692-13 [PMID: 24194538]
  53. Proc Biol Sci. 2013 Nov 27;281(1775):20132146 [PMID: 24285193]
  54. Int Microbiol. 2013 Sep;16(3):133-43 [PMID: 24568029]
  55. Front Microbiol. 2014 Feb 24;5:46 [PMID: 24605109]
  56. Cell Host Microbe. 2014 Mar 12;15(3):317-28 [PMID: 24629338]
  57. Cancer J. 2014 May-Jun;20(3):181-9 [PMID: 24855005]
  58. Genome Res. 2014 Sep;24(9):1504-16 [PMID: 24963153]
  59. J Clin Invest. 2014 Oct;124(10):4182-9 [PMID: 25036699]
  60. Cell Metab. 2014 Nov 4;20(5):742-752 [PMID: 25176148]
  61. Nature. 2014 Oct 9;514(7521):161-4 [PMID: 25297418]
  62. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16431-5 [PMID: 25368157]
  63. PLoS One. 2015 Mar 17;10(3):e0118464 [PMID: 25781931]
  64. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10112-9 [PMID: 25964342]
  65. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10126-32 [PMID: 26039982]
  66. BMC Syst Biol. 2015 Jul 27;9:42 [PMID: 26209979]
  67. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  68. Science. 2015 Sep 11;349(6253):1172-3 [PMID: 26359393]
  69. Curr Osteoporos Rep. 2015 Dec;13(6):363-71 [PMID: 26419466]
  70. Nucleic Acids Res. 2015 Nov 16;43(20):9600-12 [PMID: 26420832]
  71. Nat Rev Microbiol. 2016 Jan;14(1):20-32 [PMID: 26499895]
  72. Science. 2015 Nov 6;350(6261):663-6 [PMID: 26542567]
  73. PLoS Biol. 2015 Dec 04;13(12):e1002311 [PMID: 26636661]
  74. New Phytol. 2016 Jul;211(2):527-41 [PMID: 26990214]
  75. MBio. 2016 Mar 31;7(2):e01395 [PMID: 27034283]
  76. MBio. 2016 Mar 31;7(2):e02099 [PMID: 27034285]
  77. Mol Psychiatry. 2016 Jun;21(6):738-48 [PMID: 27090305]
  78. Genome Med. 2016 Apr 27;8(1):51 [PMID: 27122046]
  79. Transl Res. 2017 Jan;179:204-222 [PMID: 27591027]
  80. Breast Cancer. 2017 Mar;24(2):220-228 [PMID: 27709424]
  81. Nat Rev Genet. 2016 Oct 14;17(11):704-714 [PMID: 27739533]
  82. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  83. PLoS Biol. 2016 Nov 18;14(11):e2000225 [PMID: 27861590]
  84. Front Physiol. 2016 Dec 09;7:606 [PMID: 28018236]
  85. Nat Microbiol. 2017 Feb 13;2:17004 [PMID: 28191884]
  86. Cell Host Microbe. 2017 Apr 12;21(4):433-442 [PMID: 28407481]
  87. Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5822-5829 [PMID: 28584094]
  88. Sci Rep. 2017 Jul 17;7(1):5557 [PMID: 28717181]
  89. Nat Rev Immunol. 2017 Jul 27;17(8):461-463 [PMID: 28749457]
  90. Immunol Rev. 2017 Sep;279(1):123-136 [PMID: 28856734]
  91. Arch Med Res. 2017 Nov;48(8):780-789 [PMID: 29366516]
  92. Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4006-4014 [PMID: 29581311]
  93. mSystems. 2018 Mar 20;3(2):null [PMID: 29629413]
  94. Phys Rev Lett. 2018 Sep 28;121(13):138102 [PMID: 30312104]
  95. Nature. 1969 Oct 11;224(5215):177-8 [PMID: 5343519]
  96. J Theor Biol. 1969 Mar;22(3):437-67 [PMID: 5803332]

Word Cloud

Created with Highcharts 10.0.0microbiotaadaptationhostnetworksfunctionsperformholobiontevolutionmanyinteractionsmodelnetworkHNdiversityorganismsrepresentingpredefinedfunctioncanadaptabilitybacterialspecializeddysbiosiscoevolutioncomplexundeniableevidenceshowingbacteriastronglyinfluencedbiologicalmulticellularhypothesizedhost-microbialemergedincreaseadaptivefitnessplusAlthoughassociationcorroboratedspecificcasesgeneralmechanismsexplainingroleyetunderstoodpresentevolutionaryadaptsorderinteractshowinteractiongreatlyacceleratesimproveswithoutdecreasingmicrobialFurthermoreseveralpossibleinteractsdifferentwayparticipatingoneDisruptingoftenleadsnon-adaptivestatesreminiscentnoneconsistsrespectiveconsideringunitselectionfocusingarbitrarypredictsneedstructuraldynamicalcomplexityfacilitateswhereashomogeneousnon-specializedinconsequentialevendetrimentalholobiont'sknowledgefirstsymbioticspecializationecosystememergeresultalsohelpsusunderstandemergenceadapteasilymultipletasksnon-complexonesModelingRoleMicrobiomeEvolutionmicrobiomesymbiosis

Similar Articles

Cited By (12)