Darwinian selection of host and bacteria supports emergence of Lamarckian-like adaptation of the system as a whole.

Dino Osmanovic, David A Kessler, Yitzhak Rabin, Yoav Soen
Author Information
  1. Dino Osmanovic: Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel.
  2. David A Kessler: Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel.
  3. Yitzhak Rabin: Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel.
  4. Yoav Soen: Department of Biological Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel. yoavs@weizmann.ac.il.

Abstract

BACKGROUND: The relatively fast selection of symbiotic bacteria within hosts and the potential transmission of these bacteria across generations of hosts raise the question of whether interactions between host and bacteria support emergent adaptive capabilities beyond those of germ-free hosts.
RESULTS: To investigate possibilities for emergent adaptations that may distinguish composite host-microbiome systems from germ-free hosts, we introduce a population genetics model of a host-microbiome system with vertical transmission of bacteria. The host and its bacteria are jointly exposed to a toxic agent, creating a toxic stress that can be alleviated by selection of resistant individuals and by secretion of a detoxification agent ("detox"). We show that toxic exposure in one generation of hosts leads to selection of resistant bacteria, which in turn, increases the toxic tolerance of the host's offspring. Prolonged exposure to toxin over many host generations promotes anadditional form of emergent adaptation due to selection of hosts based on detox produced by their bacterial community as a whole (as opposed to properties of individual bacteria).
CONCLUSIONS: These findings show that interactions between pure Darwinian selections of host and its bacteria can give rise to emergent adaptive capabilities, including Lamarckian-like adaptation of the host-microbiome system.
REVIEWERS: This article was reviewed by Eugene Koonin, Yuri Wolf and Philippe Huneman.

Keywords

References

  1. Cell Host Microbe. 2016 May 11;19(5):731-43 [PMID: 27173935]
  2. Biol Direct. 2009 Nov 11;4:42 [PMID: 19906303]
  3. Nat Commun. 2017 Jan 12;8:14040 [PMID: 28079112]
  4. Biol Direct. 2015 Dec 02;10:68 [PMID: 26631109]
  5. Annu Rev Cell Dev Biol. 2013;29:571-92 [PMID: 23808845]
  6. ISME J. 2008 Jul;2(7):716-27 [PMID: 18401439]
  7. Evolution. 2011 Aug;65(8):2391-8 [PMID: 21790584]
  8. Appl Environ Microbiol. 2013 May;79(10):3209-14 [PMID: 23475620]
  9. Nat Rev Microbiol. 2010 Mar;8(3):218-30 [PMID: 20157340]
  10. Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701): [PMID: 27431520]
  11. Cell Rep. 2012 May 31;1(5):528-42 [PMID: 22832276]
  12. Nat Commun. 2016 Apr 15;7:11280 [PMID: 27080728]
  13. J Physiol. 2014 Jun 1;592(11):2343-55 [PMID: 24535443]
  14. Rep Prog Phys. 2015 Feb;78(3):036602 [PMID: 25719211]
  15. PLoS Biol. 2016 Nov 18;14(11):e2000225 [PMID: 27861590]
  16. Front Microbiol. 2016 Oct 21;7:1647 [PMID: 27818648]
  17. Science. 1996 Jan 12;271(5246):200-3 [PMID: 8539619]
  18. Genome Biol. 2016 Sep 26;17(1):189 [PMID: 27666579]
  19. Q Rev Biol. 2012 Dec;87(4):325-41 [PMID: 23397797]
  20. Symbiosis. 1991;11:93-101 [PMID: 11538111]
  21. Biol Lett. 2007 Apr 22;3(2):210-3 [PMID: 17251124]
  22. Trends Microbiol. 2016 Jan;24(1):63-75 [PMID: 26612499]
  23. Nature. 2014 Oct 9;514(7521):161-4 [PMID: 25297418]
  24. Front Microbiol. 2014 Feb 24;5:46 [PMID: 24605109]
  25. Genome Biol. 2015 Sep 15;16:191 [PMID: 26374288]
  26. Front Genet. 2014 Feb 25;5:27 [PMID: 24611070]
  27. Dev Biol. 2002 Feb 1;242(1):1-14 [PMID: 11795936]
  28. Biol Direct. 2016 Feb 24;11(1):9 [PMID: 26912144]
  29. PLoS Biol. 2015 Dec 04;13(12):e1002311 [PMID: 26636661]
  30. Cell. 2014 Nov 6;159(4):789-99 [PMID: 25417156]
  31. Nat Rev Microbiol. 2007 May;5(5):355-62 [PMID: 17384666]
  32. Environ Microbiol. 2009 Dec;11(12):2959-62 [PMID: 19573132]
  33. FEMS Microbiol Rev. 2008 Aug;32(5):723-35 [PMID: 18549407]
  34. ISME J. 2016 Aug;10(8):1998-2009 [PMID: 26800234]
  35. Annu Rev Entomol. 1997;42:587-609 [PMID: 15012323]
  36. Nat Commun. 2017 Apr 21;8:14826 [PMID: 28429717]
  37. Q Rev Biol. 2009 Jun;84(2):131-76 [PMID: 19606595]
  38. Nature. 2006 May 25;441(7092):509-12 [PMID: 16724067]
  39. J Physiol. 2014 Jun 1;592(11):2237-44 [PMID: 24882808]
  40. PLoS Biol. 2014 Sep 02;12(9):e1001942 [PMID: 25181317]
  41. mSystems. 2017 Jan 17;2(1): [PMID: 28144631]
  42. Science. 2009 Dec 18;326(5960):1694-7 [PMID: 19892944]
  43. Pest Manag Sci. 2016 Feb;72(2):203-9 [PMID: 26350619]
  44. J Clin Microbiol. 2004 Mar;42(3):1203-6 [PMID: 15004076]
  45. Cell. 2011 Jun 24;145(7):1049-61 [PMID: 21703449]
  46. Curr Opin Insect Sci. 2014 Oct;4:29-34 [PMID: 28043405]
  47. Front Genet. 2014 Jun 20;5:168 [PMID: 24999350]
  48. PLoS One. 2008 Jul 02;3(7):e2603 [PMID: 18596972]
  49. Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12974-9 [PMID: 15322271]
  50. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  51. Appl Environ Microbiol. 2001 Jun;67(6):2469-75 [PMID: 11375152]
  52. Cell. 2011 Dec 9;147(6):1248-56 [PMID: 22119442]
  53. MBio. 2016 Mar 31;7(2):e02099 [PMID: 27034285]
  54. Physiol Rev. 2010 Jul;90(3):859-904 [PMID: 20664075]
  55. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  56. Front Microbiol. 2016 Sep 23;7:1478 [PMID: 27721807]
  57. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  58. Genetics. 2011 Sep;189(1):397-404 [PMID: 21750254]
  59. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53 [PMID: 23576752]
  60. Proc R Soc Lond B Biol Sci. 1979 Apr 11;204(1155):131-9 [PMID: 36618]
  61. J Exp Biol. 2008 Feb;211(Pt 3):370-6 [PMID: 18203992]
  62. Nat Commun. 2015 Jul 14;6:7618 [PMID: 26173063]

MeSH Term

Adaptation, Biological
Bacteria
Bacterial Physiological Phenomena
Host-Pathogen Interactions
Microbiota
Models, Genetic
Selection, Genetic
Symbiosis

Word Cloud

Created with Highcharts 10.0.0bacteriaselectionhostshostadaptationemergenttoxictransmissioninteractionshost-microbiomesystemDarwiniangenerationsadaptivecapabilitiesgerm-freegeneticsagentcanresistantshowexposurewholeLamarckian-likeBACKGROUND:relativelyfastsymbioticwithinpotentialacrossraisequestionwhethersupportbeyondRESULTS:investigatepossibilitiesadaptationsmaydistinguishcompositesystemsintroducepopulationmodelverticaljointlyexposedcreatingstressalleviatedindividualssecretiondetoxification"detox"onegenerationleadsturnincreasestolerancehost'soffspringProlongedtoxinmanypromotesanadditionalformduebaseddetoxproducedbacterialcommunityopposedpropertiesindividualCONCLUSIONS:findingspureselectionsgiveriseincludingREVIEWERS:articlereviewedEugeneKooninYuriWolfPhilippeHunemansupportsemergenceEmergentHolobiontHost-microbiomeLamarckianPopulationVerticalhorizontal

Similar Articles

Cited By (10)