Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System.

Qigao Fan, Hai Zhang, Peng Pan, Xiangpeng Zhuang, Jie Jia, Pengsong Zhang, Zhengqing Zhao, Gaowen Zhu, Yuanyuan Tang
Author Information
  1. Qigao Fan: Internet of Things Engineering, Jiangnan University, Wuxi 214000, China. qgfan@jiangnan.edu.cn.
  2. Hai Zhang: Internet of Things Engineering, Jiangnan University, Wuxi 214000, China. 6171920011@stu.jiangnan.edu.cn.
  3. Peng Pan: Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada. peng.pan@mail.mcgill.ca.
  4. Xiangpeng Zhuang: Internet of Things Engineering, Jiangnan University, Wuxi 214000, China. 6161920011@vip.jiangnan.edu.cn.
  5. Jie Jia: Internet of Things Engineering, Jiangnan University, Wuxi 214000, China. 6171920006@stu.jiangnan.edu.cn.
  6. Pengsong Zhang: Internet of Things Engineering, Jiangnan University, Wuxi 214000, China. 1070114134@vip.jiangnan.edu.cn.
  7. Zhengqing Zhao: Internet of Things Engineering, Jiangnan University, Wuxi 214000, China. 6181915019@stu.jiangnan.edu.cn.
  8. Gaowen Zhu: Internet of Things Engineering, Jiangnan University, Wuxi 214000, China. 6181920012@stu.jiangnan.edu.cn.
  9. Yuanyuan Tang: Internet of Things Engineering, Jiangnan University, Wuxi 214000, China. 6181915013@stu.jiangnan.edu.cn.

Abstract

Pedestrian dead reckoning (PDR) systems based on a microelectromechanical-inertial measurement unit (MEMS-IMU) providing advantages of full autonomy and strong anti-jamming performance are becoming a feasible choice for pedestrian indoor positioning. In order to realize the accurate positioning of pedestrians in a closed environment, an improved pedestrian dead reckoning algorithm, mainly including improved step estimation and heading estimation, is proposed in this paper. Firstly, the original signal is preprocessed using the wavelet denoising algorithm. Then, the multi-threshold method is proposed to ameliorate the step estimation algorithm. For heading estimation suffering from accumulated error and outliers, robust adaptive Kalman filter (RAKF) algorithm is proposed in this paper, and combined with complementary filter to improve positioning accuracy. Finally, an experimental platform with inertial sensors as the core is constructed. Experimental results show that positioning error is less than 2.5% of the total distance, which is ideal for accurate positioning of pedestrians in enclosed environment.

Keywords

References

  1. Sensors (Basel). 2015 Jul 31;15(8):18901-33 [PMID: 26263998]
  2. Sensors (Basel). 2015 Aug 28;15(9):21518-36 [PMID: 26343679]
  3. Sensors (Basel). 2015 Dec 28;16(1):null [PMID: 26729114]
  4. Sensors (Basel). 2016 Jul 12;16(7): [PMID: 27420062]
  5. Sensors (Basel). 2017 Jun 02;17(6): [PMID: 28574471]
  6. Sensors (Basel). 2018 May 25;18(6):null [PMID: 29799441]
  7. Sensors (Basel). 2018 Sep 14;18(9):null [PMID: 30223461]

Grants

  1. No. GDZB-138/Six Talent Peaks Project in Jiangsu Province
  2. 51405198/National Natural Science Foundation of China
  3. B12018/the 111 Project
  4. JUFSTR20180302/National First-class Discipline Program of Food Science and Technology
  5. 2016M590406/China Postdoctoral Science Foundation

Word Cloud

Created with Highcharts 10.0.0positioningalgorithmestimationdeadreckoningpedestrianimprovedproposedKalmanfilterPedestrianMEMS-IMUindooraccuratepedestriansenvironmentstepheadingpapererrorrobustadaptiveinertialPDRsystemsbasedmicroelectromechanical-inertialmeasurementunitprovidingadvantagesfullautonomystronganti-jammingperformancebecomingfeasiblechoiceorderrealizeclosedmainlyincludingFirstlyoriginalsignalpreprocessedusingwaveletdenoisingmulti-thresholdmethodamelioratesufferingaccumulatedoutliersRAKFcombinedcomplementaryimproveaccuracyFinallyexperimentalplatformsensorscoreconstructedExperimentalresultsshowless25%totaldistanceidealenclosedImprovedDeadReckoningBasedRobustAdaptiveFilterIndoorInertialLocationSystem

Similar Articles

Cited By