Altered functional connectivity in binge eating disorder and bulimia nervosa: A resting-state fMRI study.

Marion A Stopyra, Joe J Simon, Mandy Skunde, Stephan Walther, Martin Bendszus, Wolfgang Herzog, Hans-Christoph Friederich
Author Information
  1. Marion A Stopyra: Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany. ORCID
  2. Joe J Simon: Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.
  3. Mandy Skunde: Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.
  4. Stephan Walther: Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.
  5. Martin Bendszus: Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.
  6. Wolfgang Herzog: Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.
  7. Hans-Christoph Friederich: Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.

Abstract

INTRODUCTION: The etiology of bulimic-type eating (BTE) disorders such as binge eating disorder (BED) and bulimia nervosa (BN) is still largely unknown. Brain networks subserving the processing of rewards, emotions, and cognitive control seem to play a crucial role in the development and maintenance of eating disorders. Therefore, further investigations into the neurobiological underpinnings are needed to discern abnormal connectivity patterns in BTE disorders.
METHODS: The present study aimed to investigate functional as well as seed-based connectivity within well-defined brain networks. Twenty-seven individuals with BED, 29 individuals with BN, 28 overweight, and 30 normal-weight control participants matched by age, gender, and education underwent resting-state functional magnetic resonance imaging. Functional connectivity was assessed by spatial group independent component analysis and a seed-based correlation approach by examining the default mode network (DMN), salience network (SN), and executive network (EN).
RESULTS: Group comparisons revealed that BTE disorder patients exhibit aberrant functional connectivity in the dorsal anterior cingulate cortex (dACC) within the SN, as well as in the medial prefrontal cortex within the DMN. Furthermore, BED and BN groups differed from each other in functional connectivity within each network. Seed-based correlational analysis revealed stronger synchronous dACC-retrosplenial cortex activity in the BN group.
CONCLUSION: Our findings demonstrate abnormalities in brain networks involved in salience attribution, self-referential processing, and cognitive control in bulimic-type eating disorders. Together with our observation of functional connectivity differences between BED and BN, this study offers a differentiated account of both similarities and differences regarding brain connectivity in BED and BN.

Keywords

References

  1. J Eat Disord. 2018 Feb 20;6:3 [PMID: 29468065]
  2. Neuroimage. 2012 Jan 16;59(2):1106-13 [PMID: 21967727]
  3. J Neurosci. 2007 Feb 28;27(9):2349-56 [PMID: 17329432]
  4. J Psychiatry Neurosci. 2016 Aug;41(5):E69-78 [PMID: 27575858]
  5. Neuroimage. 2016 May 15;132:390-397 [PMID: 26892855]
  6. Brain Connect. 2012;2(3):125-41 [PMID: 22642651]
  7. Obesity (Silver Spring). 2011 Jul;19(7):1515-8 [PMID: 21331066]
  8. Appetite. 2007 Jul;49(1):38-46 [PMID: 17187897]
  9. Int J Eat Disord. 2012 Jan;45(1):17-25 [PMID: 21312206]
  10. Eur J Neurosci. 2007 Apr;25(7):2224-33 [PMID: 17439499]
  11. Science. 2015 Jun 12;348(6240):1241-4 [PMID: 26068849]
  12. Curr Top Med Chem. 2012;12(21):2324-38 [PMID: 23279173]
  13. Trends Neurosci. 2013 May;36(5):268-74 [PMID: 23561718]
  14. J Neurosci. 2007 Aug 15;27(33):8877-84 [PMID: 17699669]
  15. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  16. Brain Behav Immun. 2008 Jul;22(5):630-8 [PMID: 18281193]
  17. AJNR Am J Neuroradiol. 2013 Oct;34(10):1866-72 [PMID: 22936095]
  18. Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34 [PMID: 20471808]
  19. Eur Eat Disord Rev. 2011 Sep-Oct;19(5):447-53 [PMID: 21809423]
  20. Trends Cogn Sci. 2011 Jan;15(1):37-46 [PMID: 21109477]
  21. Brain Stimul. 2009 Oct;2(4):234-7 [PMID: 20633422]
  22. Neuropharmacology. 2016 Sep;108:82-90 [PMID: 27079841]
  23. Neuroimage. 2010 Apr 1;50(2):639-43 [PMID: 20035881]
  24. Neural Comput. 1995 Nov;7(6):1129-59 [PMID: 7584893]
  25. Neurosci Biobehav Rev. 2016 Apr;63:223-38 [PMID: 26850211]
  26. Hum Brain Mapp. 2011 Dec;32(12):2075-95 [PMID: 21162045]
  27. Front Syst Neurosci. 2011 Feb 04;5:2 [PMID: 21442040]
  28. Neuroimage. 2007 Aug 1;37(1):90-101 [PMID: 17560126]
  29. Hum Brain Mapp. 2010 Mar;31(3):353-64 [PMID: 19662657]
  30. Cereb Cortex. 2004 Jun;14(6):647-54 [PMID: 15084488]
  31. Sci Rep. 2015 Dec 15;5:18028 [PMID: 26667790]
  32. Neuroimage. 2011 Jun 1;56(3):1822-31 [PMID: 21362488]
  33. Brain. 2002 Aug;125(Pt 8):1808-14 [PMID: 12135971]
  34. Appetite. 2016 Jan 1;96:195-202 [PMID: 26275334]
  35. Int J Eat Disord. 2007 Dec;40(8):758-61 [PMID: 17683096]
  36. Nat Rev Neurosci. 2006 Jul;7(7):523-34 [PMID: 16791142]
  37. Brain. 2006 Mar;129(Pt 3):564-83 [PMID: 16399806]
  38. Soc Cogn Affect Neurosci. 2015 Mar;10(3):335-41 [PMID: 24860084]
  39. Hum Brain Mapp. 2017 Feb;38(2):678-687 [PMID: 27659299]
  40. Hum Brain Mapp. 2013 Nov;34(11):2786-97 [PMID: 22522963]
  41. Brain Stimul. 2018 Jan - Feb;11(1):158-165 [PMID: 28927961]
  42. Brain Behav. 2019 Feb;9(2):e01207 [PMID: 30644179]
  43. Neuroimage Clin. 2015 Jul 02;8:611-8 [PMID: 26199873]
  44. Physiol Behav. 1993 Dec;54(6):1063-7 [PMID: 8295941]
  45. PLoS One. 2016 Sep 08;11(9):e0161329 [PMID: 27607439]
  46. Cell Mol Neurobiol. 2008 Jun;28(4):469-78 [PMID: 18027085]
  47. Compr Psychiatry. 2010 Jan-Feb;51(1):31-6 [PMID: 19932823]
  48. Mayo Clin Proc. 2010 Aug;85(8):746-51 [PMID: 20605951]
  49. J Neurol Neurosurg Psychiatry. 2005 Jun;76(6):852-7 [PMID: 15897510]
  50. Trends Cogn Sci. 2006 Sep;10(9):424-30 [PMID: 16899397]
  51. Neuroimage. 2015 Jul 15;115:177-90 [PMID: 25937490]
  52. Front Hum Neurosci. 2014 Jan 21;7:930 [PMID: 24478665]
  53. Obesity (Silver Spring). 2011 Dec;19(12):2316-21 [PMID: 21633398]
  54. Body Image. 2007 Mar;4(1):51-9 [PMID: 18089251]
  55. Soc Cogn Affect Neurosci. 2016 Sep;11(9):1393-401 [PMID: 27056455]
  56. Pediatrics. 2012 Oct;130(4):e856-64 [PMID: 22945407]
  57. Brain Struct Funct. 2010 Jun;214(5-6):655-67 [PMID: 20512370]
  58. Int J Eat Disord. 2010 Dec;43(8):724-31 [PMID: 19862702]
  59. Trends Cogn Sci. 2016 Feb;20(2):107-120 [PMID: 26655436]
  60. Front Syst Neurosci. 2016 Dec 27;10:104 [PMID: 28082874]
  61. Psychol Med. 2017 Mar;47(4):585-596 [PMID: 27804899]
  62. Hum Brain Mapp. 2001 Nov;14(3):140-51 [PMID: 11559959]
  63. Biol Psychiatry. 2009 Apr 15;65(8):654-61 [PMID: 18996508]
  64. BMC Neurol. 2005 Dec 02;5:23 [PMID: 16321166]
  65. J Psychiatr Res. 2017 Jul;90:94-101 [PMID: 28249187]
  66. Cerebellum. 2013 Oct;12(5):623-31 [PMID: 23553468]
  67. Neuroimage. 2005 Jan 15;24(2):436-43 [PMID: 15627585]
  68. Neurocase. 2014;20(1):61-8 [PMID: 23058173]
  69. Psychiatry Res. 2014 Jan 30;221(1):43-8 [PMID: 24300085]
  70. J Abnorm Psychol. 1993 May;102(2):297-303 [PMID: 8315142]
  71. Radiology. 2015 Sep;276(3):818-27 [PMID: 25848901]

MeSH Term

Adult
Binge-Eating Disorder
Bulimia Nervosa
Connectome
Emotions
Female
Gyrus Cinguli
Humans
Magnetic Resonance Imaging
Male
Prefrontal Cortex
Reward
Self-Control

Word Cloud

Created with Highcharts 10.0.0connectivityfunctionaleatingBNBEDdisordersdisorderwithinnetworkBTEbingebulimianetworkscontrolstudybrainresting-statecortexbulimic-typenervosaprocessingcognitivewellseed-basedindividualsgroupanalysisDMNsalienceSNrevealeddifferencesfMRIINTRODUCTION:etiologystilllargelyunknownBrainsubservingrewardsemotionsseemplaycrucialroledevelopmentmaintenanceThereforeinvestigationsneurobiologicalunderpinningsneededdiscernabnormalpatternsMETHODS:presentaimedinvestigatewell-definedTwenty-seven2928overweight30normal-weightparticipantsmatchedagegendereducationunderwentmagneticresonanceimagingFunctionalassessedspatialindependentcomponentcorrelationapproachexaminingdefaultmodeexecutiveENRESULTS:GroupcomparisonspatientsexhibitaberrantdorsalanteriorcingulatedACCmedialprefrontalFurthermoregroupsdifferedSeed-basedcorrelationalstrongersynchronousdACC-retrosplenialactivityCONCLUSION:findingsdemonstrateabnormalitiesinvolvedattributionself-referentialTogetherobservationoffersdifferentiatedaccountsimilaritiesregardingAlterednervosa:

Similar Articles

Cited By (18)