Yang-Yang Pang, Cong Zhang, Min-Jie Xu, Gen-Yong Huang, Yong-Xu Cheng, Xiao-Zhen Yang
Photoperiod plays an important role in individual growth, development, and metabolism in crustaceans. The growth and reproduction of crabs are closely related to the photoperiod. However, as of yet, there are still no transcriptomic reports of eyestalk ganglions treated under different photoperiods in the Chinese mitten crab (Eriocheir sinensis), which is a benthonic crab with high commercial value in Asia. In this study, we collected the eyestalk ganglions of crabs that were reared under different photoperiods, including a control group (L: D = 12 h: 12 h, named CC), a constant light group (L: D = 24 h: 0 h, named LL) and a constant darkness group (L: D = 0 h: 24 h, named DD). RNA sequencing was performed on these tissues in order to examine the effects of different photoperiods. The total numbers of clean reads from the CC, LL and DD groups were 48,772,584 bp, 53,943,281 bp and 53,815,178 bp, respectively. After de novo assembly, 161,380 unigenes were obtained and were matched with different databases. The DEGs were significantly enriched in phototransduction and energy metabolism pathways. Results from RT-qPCR showed that TRP channel protein (TRP) in the phototransduction pathway had a significantly higher level of expression in LL and DD groups than in the CC group. We found that the downregulation of the pyruvate dehydrogenase complex (PDC) gene and the upregulation phosphoenolpyruvate carboxykinase (PPC) gene were involved in energy metabolism processes in LL or DD. In addition, we also found that the upregulation of the expression level of the genes Gαq, pyruvate kinase (PK), NADH peroxidase (NADH) and ATPase is involved in phototransduction and energy metabolism. These results may shed some light on the molecular mechanism underlying the effect of photoperiod in physiological activity of E. sinensis.
Mol Neurobiol. 2018 May;55(5):4098-4106
[PMID:
28593435]
Sci Rep. 2017 Oct 11;7(1):12943
[PMID:
29021622]
J Insect Physiol. 2014 Dec;71:68-77
[PMID:
25450561]
Channels (Austin). 2013 Jul-Aug;7(4):243-8
[PMID:
23764911]
J Neurosci. 2000 Mar 1;20(5):1780-90
[PMID:
10684879]
Anim Reprod Sci. 2014 Nov 30;150(3-4):139-47
[PMID:
25262380]
Physiol Biochem Zool. 2013 Jan-Feb;86(1):106-18
[PMID:
23303325]
PLoS One. 2017 May 26;12(5):e0178417
[PMID:
28552991]
Am J Physiol. 1999 May;276(5):E896-906
[PMID:
10329984]
Comp Biochem Physiol B Biochem Mol Biol. 2010 Mar;155(3):322-6
[PMID:
19962447]
Gen Comp Endocrinol. 2016 Oct 1;237:43-52
[PMID:
27468954]
J Exp Biol. 1990 May;150:111-22
[PMID:
24003478]
Pflugers Arch. 2007 Aug;454(5):821-47
[PMID:
17487503]
J Neurosci. 2010 Sep 8;30(36):11962-72
[PMID:
20826660]
PLoS One. 2013 Dec 31;8(12):e83937
[PMID:
24391849]
Biol Trace Elem Res. 2017 Nov;180(1):63-69
[PMID:
28261761]
Chronobiol Int. 2017;34(8):1094-1104
[PMID:
28708429]
PLoS One. 2017 Apr 3;12(4):e0175046
[PMID:
28369112]
Biotechnol Bioeng. 2018 Jun;115(6):1571-1580
[PMID:
29476618]
Environ Res. 2018 May;163:80-87
[PMID:
29427954]
Science. 2010 Nov 12;330(6006):974-80
[PMID:
20966218]
Vision Res. 2008 Sep;48(20):2052-61
[PMID:
18456304]
J Physiol. 2012 Aug 1;590(15):3465-81
[PMID:
22674725]
Comp Biochem Physiol A Mol Integr Physiol. 2015 Jun;184:34-40
[PMID:
25636903]
Am J Physiol Endocrinol Metab. 2003 Oct;285(4):E718-28
[PMID:
12783775]
Dev Comp Immunol. 2018 May;82:94-103
[PMID:
29307815]
Biol Bull. 2016 Feb;230(1):15-24
[PMID:
26896174]
J R Soc Interface. 2018 Jan;15(138):
[PMID:
29343628]
Genetica. 2017 Apr;145(2):175-187
[PMID:
28204905]
Circ Res. 2015 May 22;116(11):1850-62
[PMID:
25999424]
PLoS One. 2017 Jul 28;12(7):e0182087
[PMID:
28753670]
Sci Rep. 2017 Mar 31;7:45744
[PMID:
28361886]
Eur Biophys J. 2018 Apr;47(3):205-223
[PMID:
28889232]
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2377-2382
[PMID:
29463718]
J Neurogenet. 2010 Dec;24(4):216-33
[PMID:
21067449]
Food Chem. 2018 Aug 30;258:359-365
[PMID:
29655746]
Mol Phylogenet Evol. 2015 Mar;84:145-57
[PMID:
24981559]
Comp Biochem Physiol C Toxicol Pharmacol. 2008 Mar;147(2):179-88
[PMID:
17936079]
Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R1833-45
[PMID:
17804585]
Biochim Biophys Acta Mol Cell Res. 2017 Feb;1864(2):324-335
[PMID:
27864077]
Invest Ophthalmol Vis Sci. 2006 May;47(5):2185-94
[PMID:
16639031]
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4584-9
[PMID:
15070761]
Lett Appl Microbiol. 2017 Nov;65(5):395-402
[PMID:
28763106]
Sci China Life Sci. 2012 Jan;55(1):27-34
[PMID:
22314488]
PLoS Genet. 2005 Nov;1(5):e66
[PMID:
16311625]
Invert Neurosci. 2017 Jun;17(2):6
[PMID:
28540583]
Photochem Photobiol. 2009 Jan-Feb;85(1):78-87
[PMID:
18643905]
PLoS One. 2018 Mar 19;13(3):e0193999
[PMID:
29554147]
Biochemistry. 1998 Jun 23;37(25):9064-72
[PMID:
9636052]
J Exp Biol. 2002 Jan;205(Pt 1):37-44
[PMID:
11818410]
Comp Biochem Physiol A Mol Integr Physiol. 2017 Jan;203:297-303
[PMID:
27783925]
Genome Biol. 2011;12(3):218
[PMID:
21401968]
Nat Commun. 2015 May 12;6:7079
[PMID:
25963540]
Trends Neurosci. 2008 Jan;31(1):27-36
[PMID:
18054803]
Animals
Arthropod Proteins
Brachyura
Ganglia
Gene Expression
Gene Expression Profiling
Gene Ontology
Metabolic Networks and Pathways
Models, Biological
Photoperiod
Photoreceptor Cells, Invertebrate
Real-Time Polymerase Chain Reaction
Sequence Analysis, RNA
Transcriptome
Vision, Ocular