The Individual and Combined Effects of the Cyanotoxins, Anatoxin-a and Microcystin-LR, on the Growth, Toxin Production, and Nitrogen Fixation of Prokaryotic and Eukaryotic Algae.

Mathias Ahii Chia, Benjamin J Kramer, Jennifer G Jankowiak, Maria do Carmo Bittencourt-Oliveira, Christopher J Gobler
Author Information
  1. Mathias Ahii Chia: Department of Botany, Ahmadu Bello University, Zaria 810001, Nigeria. chia28us@yahoo.com.
  2. Benjamin J Kramer: School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY 11968, USA. benjamin.j.kramer@stonybrook.edu.
  3. Jennifer G Jankowiak: School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY 11968, USA. jennifer.jankowiak@stonybrook.edu.
  4. Maria do Carmo Bittencourt-Oliveira: Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP 13418-900, Brazil. mbitt@usp.br. ORCID
  5. Christopher J Gobler: School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY 11968, USA. christopher.gobler@stonybrook.edu. ORCID

Abstract

Globally, eutrophication and warming of aquatic ecosystems has increased the frequency and intensity of cyanobacterial blooms and their associated toxins, with the simultaneous detection of multiple cyanotoxins often occurring. Despite the co-occurrence of cyanotoxins such as microcystins and anatoxin-a (ATX) in water bodies, their effects on phytoplankton communities are poorly understood. The individual and combined effects of microcystin-LR (MC-LR) and ATX on the cyanobacteria spp., and (a.k.a. ), and the chlorophyte, were investigated in the present study. Cell density, chlorophyll-a content, and the maximum quantum efficiency of photosystem II (Fv/Fm) of cells were generally lowered after exposure to ATX or MC-LR, while the combined treatment with MC-LR and ATX synergistically reduced the chlorophyll-a concentration of strain LE-3. Intracellular levels of microcystin in LE-3 significantly increased following exposure to MC-LR + ATX. The maximum quantum efficiency of photosystem II of strain UTEX B377 declined during exposure to the cyanotoxins. Nitrogen fixation by UTEX B377 was significantly inhibited by exposure to ATX, but was unaffected by MC-LR. In contrast, the combination of both cyanotoxins (MC-LR + ATX) caused a synergistic increase in the growth of . While the toxins caused an increase in the activity of enzymes that scavenge reactive oxygen species in cyanobacteria, enzyme activity was unchanged or decreased in . Collectively this study demonstrates that MC-LR and ATX can selectively promote and inhibit the growth and performance of green algae and cyanobacteria, respectively, and that the combined effect of these cyanotoxins was often more intense than their individual effects on some strains. This suggests that the release of multiple cyanotoxins in aquatic ecosystems, following the collapse of blooms, may influence the succession of plankton communities.

Keywords

References

  1. Environ Monit Assess. 2015 Oct;187(10):606 [PMID: 26329267]
  2. Toxins (Basel). 2014 Jan 28;6(2):488-508 [PMID: 24476710]
  3. Appl Environ Microbiol. 1978 Mar;35(3):527-32 [PMID: 416753]
  4. Arch Toxicol. 2017 Mar;91(3):1049-1130 [PMID: 28110405]
  5. Harmful Algae. 2018 Apr;74:67-77 [PMID: 29724344]
  6. Bioresour Technol. 2017 Aug;238:205-213 [PMID: 28433909]
  7. Aquat Toxicol. 2016 Apr;173:94-104 [PMID: 26854872]
  8. Science. 1975 Feb 14;187(4176):542-4 [PMID: 803708]
  9. Mar Drugs. 2013 Aug 21;11(8):3091-108 [PMID: 23966039]
  10. FEBS Lett. 1990 May 21;264(2):187-92 [PMID: 2162782]
  11. J Bacteriol. 2001 Jan;183(2):411-25 [PMID: 11133933]
  12. Toxicon. 2013 Aug;70:1-8 [PMID: 23578514]
  13. Ecotoxicol Environ Saf. 2014 Jun;104:294-301 [PMID: 24726942]
  14. Res Microbiol. 2003 Apr;154(3):157-64 [PMID: 12706503]
  15. PLoS One. 2011 Mar 18;6(3):e17615 [PMID: 21445264]
  16. Harmful Algae. 2016 Apr;54:194-212 [PMID: 28073476]
  17. Plant Physiol. 1990 Aug;93(4):1460-5 [PMID: 16667640]
  18. Appl Environ Microbiol. 1983 Apr;45(4):1331-7 [PMID: 16346272]
  19. Environ Toxicol. 2002;17(4):407-13 [PMID: 12203964]
  20. Aquat Toxicol. 2004 Jun 10;68(2):185-92 [PMID: 15145228]
  21. Harmful Algae. 2016 Apr;54:4-20 [PMID: 28073480]
  22. Plant Physiol. 1990 Nov;94(3):1116-23 [PMID: 16667805]
  23. FEBS Lett. 2012 Mar 9;586(5):585-95 [PMID: 22079668]
  24. Ann Rev Mar Sci. 2017 Jan 3;9:311-335 [PMID: 27483121]
  25. Environ Sci Pollut Res Int. 2016 Nov;23(22):23092-23102 [PMID: 27590628]
  26. Ecotoxicol Environ Saf. 2017 Aug;142:189-199 [PMID: 28411514]
  27. Adv Exp Med Biol. 2008;619:217-37 [PMID: 18461771]
  28. Toxicon. 2014 Oct;89:87-90 [PMID: 25064273]
  29. Harmful Algae. 2015 Sep;48:12-20 [PMID: 29724471]
  30. PLoS One. 2013 Jul 23;8(7):e69834 [PMID: 23894552]
  31. Ecotoxicol Environ Saf. 2008 Sep;71(1):1-15 [PMID: 18599121]
  32. PLoS One. 2012;7(1):e29981 [PMID: 22276137]
  33. Mar Drugs. 2013 Jun 27;11(7):2239-58 [PMID: 23807545]
  34. Ecotoxicology. 2008 Aug;17(6):504-16 [PMID: 18389369]
  35. Can J Microbiol. 1976 Jan;22(1):43-51 [PMID: 814983]
  36. FEMS Microbiol Rev. 2013 Jan;37(1):23-43 [PMID: 23051004]
  37. Ecotoxicology. 2015 Nov;24(9):1848-57 [PMID: 26209169]
  38. Chem Biol. 2000 Oct;7(10):753-64 [PMID: 11033079]
  39. Toxins (Basel). 2017 Jul 22;9(7): [PMID: 28737685]
  40. Microb Ecol. 2013 May;65(4):995-1010 [PMID: 23314096]
  41. Ann Bot. 2003 Jan;91 Spec No:179-94 [PMID: 12509339]
  42. Aquat Toxicol. 2013 Aug 15;138-139:26-34 [PMID: 23685387]
  43. Curr Med Chem. 1999 Apr;6(4):279-309 [PMID: 10101214]
  44. Ecotoxicology. 2016 May;25(4):745-58 [PMID: 26910533]

MeSH Term

Anabaena
Chlorophyceae
Cyanobacteria Toxins
Drug Synergism
Glutathione Transferase
Marine Toxins
Microcystins
Microcystis
Nitrogen Fixation
Peroxidase
Superoxide Dismutase
Tropanes

Chemicals

Cyanobacteria Toxins
Marine Toxins
Microcystins
Tropanes
anatoxin a
Peroxidase
Superoxide Dismutase
Glutathione Transferase
cyanoginosin LR

Word Cloud

Created with Highcharts 10.0.0ATXMC-LRcyanotoxinscyanobacteriaexposureeffectscombinedaquaticecosystemsincreasedbloomstoxinsmultipleoftencommunitiesindividualastudychlorophyll-amaximumquantumefficiencyphotosystemIIstrainLE-3significantlyfollowing+UTEXB377NitrogencausedincreasegrowthactivityGloballyeutrophicationwarmingfrequencyintensitycyanobacterialassociatedsimultaneousdetectionoccurringDespiteco-occurrencemicrocystinsanatoxin-awaterbodiesphytoplanktonpoorlyunderstoodmicrocystin-LRsppkchlorophyteinvestigatedpresentCelldensitycontentFv/FmcellsgenerallyloweredtreatmentsynergisticallyreducedconcentrationIntracellularlevelsmicrocystindeclinedfixationinhibitedunaffectedcontrastcombinationsynergisticenzymesscavengereactiveoxygenspeciesenzymeunchangeddecreasedCollectivelydemonstratescanselectivelypromoteinhibitperformancegreenalgaerespectivelyeffectintensestrainssuggestsreleasecollapsemayinfluencesuccessionplanktonIndividualCombinedEffectsCyanotoxinsAnatoxin-aMicrocystin-LRGrowthToxinProductionFixationProkaryoticEukaryoticAlgaeallelopathybioactivesecondarymetaboliteschlorophytes

Similar Articles

Cited By