Brain evolution in social insects: advocating for the comparative approach.

R Keating Godfrey, Wulfila Gronenberg
Author Information
  1. R Keating Godfrey: Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA. rkeatinggodfrey@email.arizona.edu. ORCID
  2. Wulfila Gronenberg: Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.

Abstract

Sociality is classified as one of the major transitions in the evolution of complexity and much effort has been dedicated to understanding what traits predispose lineages to sociality. Conversely, studies addressing the role of sociality in brain evolution (e.g., the social brain hypothesis) have not focused on particular traits and instead relied largely on measurements of relative brain composition. Hymenoptera range from solitary to advanced social species, providing enticing comparisons for studying sociality and neural trait evolution. Here we argue that measuring the role of sociality in brain evolution will benefit from attending to recent advances in neuroethology and adopting existing phylogenetic comparative methods employed in analysis of non-neural traits. Such analyses should rely on traits we expect to vary at the taxonomic level used in comparative analyses and include phylogenetic structure. We outline the limits of brain size and volumetric interpretation and advocate closer attention to trait stability and plasticity at different levels of organization. We propose neural traits measured at the cellular, circuit, and molecular levels will serve as more robust variables for evolutionary analyses. We include examples of particular traits and specific clades that are well-suited to answer questions about the role of sociality in nervous system evolution.

Keywords

References

  1. PLoS One. 2011;6(6):e21086 [PMID: 21695157]
  2. J Comp Neurol. 2016 Jun 15;524(9):1747-69 [PMID: 26918905]
  3. Proc Biol Sci. 2011 Mar 22;278(1707):940-51 [PMID: 21068044]
  4. Dev Neurobiol. 2007 Jan;67(1):39-46 [PMID: 17443770]
  5. Philos Trans R Soc Lond B Biol Sci. 2007 Apr 29;362(1480):649-58 [PMID: 17301028]
  6. Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6569-6574 [PMID: 28533385]
  7. Proc Biol Sci. 2014 Oct 22;281(1793): [PMID: 25165765]
  8. Annu Rev Entomol. 2018 Jan 7;63:575-598 [PMID: 29068707]
  9. Nature. 2013 Jun 27;498(7455):456-62 [PMID: 23783517]
  10. Annu Rev Entomol. 1975;20:359-79 [PMID: 1090240]
  11. Elife. 2014 Mar 26;3:e02115 [PMID: 24670956]
  12. Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12329-34 [PMID: 20616090]
  13. Brain Behav Evol. 2013;81(2):86-92 [PMID: 23363733]
  14. Dev Neurobiol. 2008 Jun;68(7):950-9 [PMID: 18361403]
  15. Brain Behav Evol. 2011;77(1):5-13 [PMID: 21252471]
  16. Trends Cogn Sci. 2017 Sep;21(9):691-702 [PMID: 28625354]
  17. Philos Trans R Soc Lond B Biol Sci. 2011 Apr 12;366(1567):1017-27 [PMID: 21357224]
  18. Zoological Lett. 2016 Jul 29;2:14 [PMID: 27478620]
  19. Science. 2007 Jun 29;316(5833):1901-4 [PMID: 17600217]
  20. Dev Biol. 2014 Apr 1;388(1):103-16 [PMID: 24525296]
  21. Annu Rev Entomol. 2013;58:57-78 [PMID: 22934982]
  22. Neuron. 2011 Apr 14;70(1):8-19 [PMID: 21482352]
  23. Prog Brain Res. 2012;195:91-102 [PMID: 22230624]
  24. Am Nat. 2006 Mar;167(3):390-400 [PMID: 16673347]
  25. Brain Behav Evol. 2008;71(1):1-14 [PMID: 17878714]
  26. Neuron. 2011 Dec 8;72(5):698-711 [PMID: 22153368]
  27. Proc Biol Sci. 2015 Feb 22;282(1801):20142502 [PMID: 25567649]
  28. J Insect Behav. 2009 May;22(3):217-226 [PMID: 21654914]
  29. Brain Behav Evol. 2005;66(1):50-61 [PMID: 15821348]
  30. Ecology. 2012 May;93(5):1049-58 [PMID: 22764491]
  31. Nature. 2017 Aug 9;548(7666):175-182 [PMID: 28796202]
  32. Ann Hum Biol. 2009 Sep-Oct;36(5):562-72 [PMID: 19575315]
  33. J Insect Sci. 2012;12:21 [PMID: 22954231]
  34. J Comp Neurol. 2003 Feb 17;456(4):305-20 [PMID: 12532404]
  35. Elife. 2016 Mar 15;5:e13399 [PMID: 26975248]
  36. Science. 2015 Jun 5;348(6239):1139-43 [PMID: 25977371]
  37. Exp Brain Res. 1974 Feb 28;19(4):406-32 [PMID: 4827867]
  38. J Physiol Paris. 2014 Apr-Jun;108(2-3):84-95 [PMID: 25092259]
  39. PLoS Comput Biol. 2011 Feb 03;7(2):e1001066 [PMID: 21304930]
  40. J Neurosci. 2005 Mar 9;25(10):2518-21 [PMID: 15758160]
  41. Proc Biol Sci. 2004 Sep 22;271(1551):1955-60 [PMID: 15347520]
  42. Biol Lett. 2006 Dec 22;2(4):557-60 [PMID: 17148287]
  43. Curr Biol. 2013 Nov 18;23(22):R1011-R1012 [PMID: 24262827]
  44. Brain Behav Evol. 2015;85(2):117-24 [PMID: 25925014]
  45. Biol Lett. 2007 Apr 22;3(2):137-9 [PMID: 17284400]
  46. Oecologia. 1994 Jul;98(2):235-238 [PMID: 28313983]
  47. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):756-761 [PMID: 29311307]
  48. PLoS One. 2013 Aug 21;8(8):e71732 [PMID: 23990981]
  49. Brain Behav Evol. 2010;76(1):32-44 [PMID: 20926854]
  50. Science. 2008 May 30;320(5880):1213-6 [PMID: 18511689]
  51. Sci Rep. 2017 Oct 23;7(1):13785 [PMID: 29062138]
  52. Proc Biol Sci. 2017 Oct 11;284(1864): [PMID: 28978727]
  53. J Comp Neurol. 2009 Nov 10;517(2):210-25 [PMID: 19731336]
  54. Dev Neurobiol. 2010 Mar;70(4):222-34 [PMID: 20029932]
  55. Biol Lett. 2011 Feb 23;7(1):86-8 [PMID: 20591852]
  56. Nat Ecol Evol. 2017 Mar 27;1(5):112 [PMID: 28812699]
  57. Nature. 1999 Oct 28;401(6756):877-84 [PMID: 10553904]
  58. Proc Biol Sci. 2013 Oct 09;280(1772):20131907 [PMID: 24107530]
  59. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13367-71 [PMID: 16157878]
  60. Dev Neurobiol. 2017 Sep;77(9):1057-1071 [PMID: 28245532]
  61. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7107-12 [PMID: 21482775]
  62. Syst Biol. 2016 May;65(3):417-31 [PMID: 26911152]
  63. Front Physiol. 2012 Nov 27;3:442 [PMID: 23205013]
  64. J Comp Neurol. 2012 Oct 15;520(15):3509-27 [PMID: 22430260]
  65. Curr Biol. 2017 May 8;27(9):R333-R336 [PMID: 28486113]
  66. Curr Biol. 2016 Apr 25;26(8):1057-61 [PMID: 27068421]
  67. Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684): [PMID: 26554045]
  68. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1388-92 [PMID: 2919184]
  69. Philos Trans R Soc Lond B Biol Sci. 2017 Aug 19;372(1727): [PMID: 28673920]
  70. Science. 1978 Nov 17;202(4369):770-2 [PMID: 17807252]
  71. J Insect Sci. 2007;7:1-13 [PMID: 20345316]
  72. Front Hum Neurosci. 2009 Nov 09;3:31 [PMID: 19915731]
  73. Front Syst Neurosci. 2010 Mar 03;4:3 [PMID: 20339482]
  74. Arthropod Struct Dev. 2012 Jan;41(1):29-34 [PMID: 22078364]
  75. Elife. 2017 Jul 18;6: [PMID: 28718765]
  76. J Neurobiol. 1990 Oct;21(7):1072-84 [PMID: 1979610]
  77. J Neurosci. 2010 May 5;30(18):6461-5 [PMID: 20445072]
  78. Mol Phylogenet Evol. 2017 Nov;116:213-226 [PMID: 28887149]
  79. Nature. 1993 Jul 15;364(6434):238-40 [PMID: 8321320]
  80. Genome Biol. 2018 Apr 25;19(1):55 [PMID: 29695303]
  81. Front Neuroinform. 2018 Mar 23;12:13 [PMID: 29628885]
  82. Can J Physiol Pharmacol. 1992;70 Suppl:S158-64 [PMID: 1295666]
  83. Biol Rev Camb Philos Soc. 2018 Feb;93(1):28-54 [PMID: 28508537]
  84. Neuron. 2012 Jun 21;74(6):970-4 [PMID: 22726828]
  85. J Theor Biol. 1983 Nov 21;105(2):317-32 [PMID: 6656284]
  86. Curr Opin Insect Sci. 2016 Jun;15:1-8 [PMID: 27436726]
  87. Nat Genet. 2003 Mar;33 Suppl:245-54 [PMID: 12610534]
  88. Sci Rep. 2016 Feb 24;6:21768 [PMID: 26908205]
  89. Front Syst Neurosci. 2010 Feb 03;3:21 [PMID: 20161763]
  90. PLoS Biol. 2010 Oct 05;8(10): [PMID: 20957184]
  91. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4436-41 [PMID: 11891325]
  92. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4387-9 [PMID: 6933492]
  93. Brain Behav Evol. 2007;70(2):115-24 [PMID: 17510549]
  94. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8548-51 [PMID: 16593638]
  95. Science. 2015 Oct 16;350(6258):317-20 [PMID: 26472907]
  96. Learn Mem. 2009 Sep 30;16(10):607-15 [PMID: 19794186]
  97. Proc Biol Sci. 2016 Oct 26;283(1841): [PMID: 27798312]
  98. J Evol Biol. 2014 Mar;27(3):593-603 [PMID: 26227898]
  99. Naturwissenschaften. 2003 Feb;90(2):88-92 [PMID: 12590305]
  100. PLoS One. 2011 Mar 01;6(3):e17514 [PMID: 21390261]
  101. Philos Trans R Soc Lond B Biol Sci. 2007 Apr 29;362(1480):561-75 [PMID: 17255006]
  102. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3026-31 [PMID: 25624509]
  103. Trends Ecol Evol. 2015 Jul;30(7):426-33 [PMID: 26051561]
  104. Sci Rep. 2017 Dec;7(1):8 [PMID: 28127058]
  105. Curr Biol. 2017 Apr 3;27(7):1013-1018 [PMID: 28343967]
  106. Philos Trans A Math Phys Eng Sci. 2009 Jun 13;367(1896):2387-97 [PMID: 19414461]
  107. J Theor Biol. 2003 Jan 21;220(2):157-68 [PMID: 12468289]
  108. Front Physiol. 2016 Jun 23;7:244 [PMID: 27445837]
  109. Curr Opin Neurobiol. 2019 Feb;54:146-154 [PMID: 30368037]
  110. Front Zool. 2012 Dec 10;9(1):35 [PMID: 23216648]
  111. Curr Opin Insect Sci. 2016 Dec;18:27-34 [PMID: 27939707]
  112. Nat Rev Neurosci. 2003 Apr;4(4):266-75 [PMID: 12671643]
  113. J Comp Neurol. 2015 Apr 15;523(6):869-91 [PMID: 25400217]
  114. Q Rev Biol. 1983 Dec;58(4):495-512 [PMID: 6665118]
  115. J Comp Neurol. 2009 Mar 20;513(3):265-291 [PMID: 19152379]
  116. Proc Biol Sci. 2010 Jul 22;277(1691):2157-63 [PMID: 20335213]
  117. J Ultrastruct Res. 1962 Dec;7:389-98 [PMID: 13994379]
  118. Brain Behav Evol. 2013;82(1):9-18 [PMID: 23979452]
  119. J Hum Evol. 2006 Nov;51(5):480-9 [PMID: 16890272]
  120. Mol Phylogenet Evol. 2012 Dec;65(3):926-39 [PMID: 22982437]
  121. J Evol Biol. 2014 Oct;27(10):2035-45 [PMID: 25066512]
  122. Brain Behav Evol. 1989;33(1):25-33 [PMID: 2720368]
  123. Q Rev Biol. 1953 Jun;28(2):136-56 [PMID: 13074471]
  124. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1182-6 [PMID: 22232688]
  125. Eur J Neurosci. 2012 Mar;35(5):682-90 [PMID: 22300014]
  126. Annu Rev Entomol. 2001;46:703-27 [PMID: 11112184]
  127. Front Syst Neurosci. 2010 Jul 13;4: [PMID: 20827403]
  128. Elife. 2014 Dec 23;3:e04580 [PMID: 25535794]
  129. Proc Biol Sci. 2011 Sep 22;278(1719):2705-13 [PMID: 21676977]
  130. Behav Ecol Sociobiol. 2010 Jan;64(3):305-316 [PMID: 20119486]
  131. Proc Biol Sci. 2015 Jul 7;282(1810): [PMID: 26085587]
  132. J Neurosci. 2002 Oct 1;22(19):8514-22 [PMID: 12351725]
  133. Arthropod Struct Dev. 2016 Sep;45(5):399-421 [PMID: 27555065]
  134. Neuron. 2007 Oct 25;56(2):201-8 [PMID: 17964240]
  135. PLoS Comput Biol. 2008 Apr 18;4(4):e1000062 [PMID: 18421373]
  136. Proc Biol Sci. 2014 Apr 16;281(1784):20140217 [PMID: 24741016]
  137. Dev Neurobiol. 2010 May;70(6):408-23 [PMID: 20131320]
  138. Front Behav Neurosci. 2015 Apr 08;9:84 [PMID: 25904854]
  139. Front Neuroanat. 2015 Feb 04;8:166 [PMID: 25698935]
  140. Science. 2013 May 31;340(6136):1090-3 [PMID: 23599264]
  141. Evolution. 1997 Dec;51(6):1699-1711 [PMID: 28565128]
  142. Cell Tissue Res. 2008 Jul;333(1):125-45 [PMID: 18504618]
  143. Arthropod Struct Dev. 2003 Aug;32(1):103-23 [PMID: 18088998]
  144. Ann N Y Acad Sci. 1977 Sep 30;299:146-60 [PMID: 280197]

MeSH Term

Animals
Behavior, Animal
Biological Evolution
Brain
Insecta
Neural Pathways
Neuronal Plasticity
Organ Size
Social Behavior
Species Specificity
Synaptic Transmission

Word Cloud

Created with Highcharts 10.0.0evolutiontraitsbrainsocialityrolesocialcomparativeanalyseshypothesisparticularneuraltraitwillphylogeneticincludesizelevelsBrainSocialityclassifiedonemajortransitionscomplexitymucheffortdedicatedunderstandingpredisposelineagesConverselystudiesaddressingegfocusedinsteadreliedlargelymeasurementsrelativecompositionHymenopterarangesolitaryadvancedspeciesprovidingenticingcomparisonsstudyingarguemeasuringbenefitattendingrecentadvancesneuroethologyadoptingexistingmethodsemployedanalysisnon-neuralrelyexpectvarytaxonomiclevelusedstructureoutlinelimitsvolumetricinterpretationadvocatecloserattentionstabilityplasticitydifferentorganizationproposemeasuredcellularcircuitmolecularserverobustvariablesevolutionaryexamplesspecificcladeswell-suitedanswerquestionsnervoussysteminsects:advocatingapproachDivisionlaborEvolutionaryframeworkSocial

Similar Articles

Cited By