Supramolecular Tuning of HS Release from Aromatic Peptide Amphiphile Gels: Effect of Core Unit Substituents.

Yun Qian, Kuljeet Kaur, Jeffrey C Foster, John B Matson
Author Information
  1. Yun Qian: Department of Chemistry, Macromolecules Innovation Institute, and Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States.
  2. Kuljeet Kaur: Department of Chemistry, Macromolecules Innovation Institute, and Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States.
  3. Jeffrey C Foster: Department of Chemistry, Macromolecules Innovation Institute, and Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States.
  4. John B Matson: Department of Chemistry, Macromolecules Innovation Institute, and Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States. ORCID

Abstract

HS is a gasotransmitter with several physiological roles, but its reactivity and short half-life in biological media make its controlled delivery difficult. For biological applications of the gas, hydrogels have the potential to deliver HS with several advantages over other donor systems, including localized delivery, controlled release rates, biodegradation, and variable mechanical properties. In this study, we designed and evaluated peptide-based HS-releasing hydrogels with controllable HS delivery. The hydrogels were prepared from short, self-assembling aromatic peptide amphiphiles (APAs), functionalized on their N-terminus with S-aroylthiooximes (SATOs), which release HS in response to a thiol trigger. The APAs were studied both in solution and in gel forms, with gelation initiated by addition of CaCl. Various substituents were included on the SATO component of the APAs in order to evaluate their effects on self-assembled morphology and HS release rate in both the solution and gel phases. Transmission electron microscopy (TEM) images confirmed that all HS-releasing APAs self-assembled into nanofibers above a critical aggregation concentration (CAC) of ∼0.5 mg/mL. Below the CAC, substituents on the SATO group affected HS release rates predictably in line with electronic effects (Hammett σ values) according to a linear free energy relationship. Above the CAC, circular dichroism, infrared, and fluorescence spectroscopies demonstrated that substituents influenced the self-assembled structures by affecting hydrogen bonding (β-sheet formation) and π-π stacking. At these concentrations, electronic control over release rates diminished, both in solution and in the gel form. Rather, the release rate depended primarily on the degree of organization in the β-sheets and the amount of π-π stacking. This supramolecular control over release rate may enable the evaluation of HS-releasing hydrogels with different release rates in biological applications.

References

  1. Mol Pharm. 2017 Apr 3;14(4):1300-1306 [PMID: 28300411]
  2. J Neurosci. 1996 Feb 1;16(3):1066-71 [PMID: 8558235]
  3. J Am Chem Soc. 2010 Mar 3;132(8):2719-28 [PMID: 20131781]
  4. Trends Biochem Sci. 2014 May;39(5):227-32 [PMID: 24767680]
  5. Org Lett. 2014 Mar 21;16(6):1558-61 [PMID: 24575729]
  6. Br J Pharmacol. 2011 Mar;162(5):1171-8 [PMID: 21091646]
  7. Biomacromolecules. 2015 Nov 9;16(11):3473-9 [PMID: 26418176]
  8. Chemistry. 2017 Aug 22;23(47):11294-11300 [PMID: 28489258]
  9. Theranostics. 2016 Apr 28;6(7):1065-74 [PMID: 27217839]
  10. Phys Chem Chem Phys. 2008 May 21;10(19):2646-55 [PMID: 18464979]
  11. Acta Biochim Biophys Sin (Shanghai). 2007 Aug;39(8):549-59 [PMID: 17687489]
  12. Antioxid Redox Signal. 2010 May 1;12(9):1111-23 [PMID: 19803743]
  13. Angew Chem Int Ed Engl. 2016 Nov 14;55(47):14638-14642 [PMID: 27774732]
  14. Oxid Med Cell Longev. 2015;2015:925167 [PMID: 26078822]
  15. Biomater Sci. 2017 Dec 19;6(1):216-224 [PMID: 29214247]
  16. J Phys Chem B. 2010 Apr 8;114(13):4407-15 [PMID: 20297770]
  17. Chem Commun (Camb). 2012 Jan 4;48(1):26-33 [PMID: 22080255]
  18. Chem Soc Rev. 2014 Dec 7;43(23):8150-77 [PMID: 25199102]
  19. J Am Chem Soc. 2010 May 5;132(17):6041-6 [PMID: 20377229]
  20. Chem Commun (Camb). 2014 Sep 21;50(73):10630-3 [PMID: 25074634]
  21. J Am Chem Soc. 2016 Oct 19;138(41):13477-13480 [PMID: 27715026]
  22. Adv Drug Deliv Rev. 2017 Feb;110-111:137-156 [PMID: 27374785]
  23. Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):E3095-103 [PMID: 26038575]
  24. Biochem Biophys Res Commun. 2012 Mar 16;419(3):523-8 [PMID: 22366248]
  25. ACS Appl Mater Interfaces. 2016 Oct 19;8(41):27474-27481 [PMID: 27504858]
  26. Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15560-5 [PMID: 17878306]
  27. Biomacromolecules. 2014 Apr 14;15(4):1171-84 [PMID: 24568678]
  28. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8801-2 [PMID: 22615409]
  29. Handb Exp Pharmacol. 2015;230:365-88 [PMID: 26162844]
  30. Biomaterials. 2009 Mar;30(7):1339-47 [PMID: 19100615]
  31. Anal Biochem. 1965 Apr;11:126-32 [PMID: 14328633]
  32. Chem Soc Rev. 2012 May 21;41(10):3742-52 [PMID: 22362384]
  33. Biochem Pharmacol. 2018 Mar;149:110-123 [PMID: 29175421]
  34. J Org Chem. 2018 Nov 2;83(21):13363-13369 [PMID: 30347157]
  35. Org Lett. 2017 May 5;19(9):2278-2281 [PMID: 28414240]
  36. J Am Chem Soc. 2018 Nov 7;140(44):14945-14951 [PMID: 30369241]
  37. Physiol Rev. 2012 Apr;92(2):791-896 [PMID: 22535897]
  38. Org Lett. 2017 Jan 6;19(1):62-65 [PMID: 27996277]
  39. ACS Chem Biol. 2013;8(6):1283-90 [PMID: 23547844]
  40. Angew Chem Int Ed Engl. 2016 Mar 24;55(14):4514-8 [PMID: 26822005]
  41. J Phys Chem B. 2014 Dec 11;118(49):14536-45 [PMID: 25402824]
  42. Biophys Chem. 1988 Aug;31(1-2):77-86 [PMID: 3233294]
  43. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21972-7 [PMID: 19955410]
  44. Circ Res. 2014 Feb 14;114(4):730-7 [PMID: 24526678]
  45. Nat Protoc. 2006;1(6):2876-90 [PMID: 17406547]
  46. Chem Commun (Camb). 2015 Aug 25;51(66):13131-4 [PMID: 26189449]
  47. Crit Care. 2009;13(3):213 [PMID: 19519960]
  48. EMBO J. 2001 Nov 1;20(21):6008-16 [PMID: 11689441]
  49. J Am Chem Soc. 2011 Jan 12;133(1):15-7 [PMID: 21142018]
  50. Circulation. 2008 May 6;117(18):2351-60 [PMID: 18443240]
  51. Biomaterials. 2016 Aug;98:192-202 [PMID: 27192421]
  52. Soft Matter. 2012 Apr 7;8(13):3586-3595 [PMID: 23130084]
  53. Nat Rev Drug Discov. 2010 Sep;9(9):728-43 [PMID: 20811383]

Grants

  1. R01 GM123508/NIGMS NIH HHS

MeSH Term

Circular Dichroism
Hydrogels
Hydrogen Bonding
Hydrogen Sulfide
Microscopy, Electron, Transmission
Nanofibers
Peptides
Spectrometry, Fluorescence
Spectrophotometry, Infrared

Chemicals

Hydrogels
Peptides
Hydrogen Sulfide

Word Cloud

Created with Highcharts 10.0.0releaseHShydrogelsratesAPAsbiologicaldeliveryHS-releasingsolutiongelsubstituentsself-assembledrateCACseveralshortcontrolledapplicationsSATOeffectselectronicπ-πstackingcontrolgasotransmitterphysiologicalrolesreactivityhalf-lifemediamakedifficultgaspotentialdeliveradvantagesdonorsystemsincludinglocalizedbiodegradationvariablemechanicalpropertiesstudydesignedevaluatedpeptide-basedcontrollablepreparedself-assemblingaromaticpeptideamphiphilesfunctionalizedN-terminusS-aroylthiooximesSATOsresponsethioltriggerstudiedformsgelationinitiatedadditionCaClVariousincludedcomponentorderevaluatemorphologyphasesTransmissionelectronmicroscopyTEMimagesconfirmednanofiberscriticalaggregationconcentration∼05mg/mLgroupaffectedpredictablylineHammettσvaluesaccordinglinearfreeenergyrelationshipcirculardichroisminfraredfluorescencespectroscopiesdemonstratedinfluencedstructuresaffectinghydrogenbondingβ-sheetformationconcentrationsdiminishedformRatherdependedprimarilydegreeorganizationβ-sheetsamountsupramolecularmayenableevaluationdifferentSupramolecularTuningReleaseAromaticPeptideAmphiphileGels:EffectCoreUnitSubstituents

Similar Articles

Cited By (13)