HIV-1 infection increases microRNAs that inhibit Dicer1, HRB and HIV-EP2, thereby reducing viral replication.

Shira Modai, Luba Farberov, Eytan Herzig, Ofer Isakov, Amnon Hizi, Noam Shomron
Author Information
  1. Shira Modai: Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  2. Luba Farberov: Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. ORCID
  3. Eytan Herzig: Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  4. Ofer Isakov: Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  5. Amnon Hizi: Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  6. Noam Shomron: Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. ORCID

Abstract

HIV-1 is the causative agent of AIDS (Autoimmune Deficiency Syndrome). HIV-1 infection results in systemic CD4+ T cell depletion, thereby impairing cell-mediated immunity. MicroRNAs are short (~22 nucleotides long), endogenous single-stranded RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3' UTR) of mRNA transcripts. The relation between HIV-1 infection and human miRNA expression profile has been previously investigated, and studies have shown that the virus can alter miRNA expression and vice versa. Here, we broaden the understanding of the HIV-1 infection process, and show that miRNA-186, 210 and 222 are up-regulated following HIV-1 infection of human Sup-T1 cells. As a result, the host miRNA target genes: Dicer1 (Double-Stranded RNA-Specific Endoribonuclease), HRB (HIV-1 Rev-binding protein) and HIV-EP2 (Human Immunodeficiency Virus Type I Enhancer Binding Protein 2), are down-regulated. Moreover, testing the miRNA-gene anti- correlation on the Jurkat and the HeLa-MAGI cell lines demonstrated the ability of the miRNAs to down-regulate viral expression as well. To conclude, we found that human miR-186, 210 and 222 directly regulate the human genes Dicer1, HRB and HIV-EP2, thus may be filling key roles during HIV-1 replication and miRNA biogenesis. This finding may contribute to the development of new therapeutic strategies.

References

  1. Nucleic Acids Res. 2012 Jun;40(11):e86 [PMID: 22406831]
  2. Nucleic Acids Res. 2014 Nov 10;42(20):12789-805 [PMID: 25352551]
  3. Gene. 1989 Apr 15;77(1):51-9 [PMID: 2744487]
  4. J Antimicrob Chemother. 2014 Nov;69(11):3067-75 [PMID: 25063777]
  5. Retrovirology. 2014 Aug 12;11:60 [PMID: 25117862]
  6. Blood. 2012 Jun 28;119(26):6259-67 [PMID: 22286198]
  7. Cytokine Growth Factor Rev. 2012 Aug-Oct;23(4-5):207-14 [PMID: 22738931]
  8. Genome Res. 2002 Jun;12(6):996-1006 [PMID: 12045153]
  9. Nature. 1996 Jun 20;381(6584):661-6 [PMID: 8649511]
  10. J Virol. 2015 Aug;89(16):8119-29 [PMID: 25995261]
  11. Nat Rev Cancer. 2014 Oct;14(10):662-72 [PMID: 25176334]
  12. Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7 [PMID: 21037258]
  13. BMC Med. 2009 Sep 16;7:48 [PMID: 19758442]
  14. Science. 1997 Jul 4;277(5322):32-3 [PMID: 9229768]
  15. Nucleic Acids Res. 2011 May;39(9):3710-23 [PMID: 21247879]
  16. Science. 2007 Mar 16;315(5818):1579-82 [PMID: 17322031]
  17. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  18. Curr Genomics. 2015 Oct;16(5):327-35 [PMID: 27047253]
  19. RNA Biol. 2014;11(4):334-8 [PMID: 24717285]
  20. Cell. 2006 Mar 24;124(6):1169-81 [PMID: 16564011]
  21. Retrovirology. 2006 Dec 20;3:95 [PMID: 17181864]
  22. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11348-53 [PMID: 9736739]
  23. Genome Res. 2009 Jan;19(1):92-105 [PMID: 18955434]
  24. BMC Med. 2015 Nov 20;13:284 [PMID: 26588898]
  25. J Biol Chem. 2007 Sep 14;282(37):26641-26645 [PMID: 17627941]
  26. Curr Biol. 1996 Jul 1;6(7):848-54 [PMID: 8805303]
  27. J Gen Virol. 2005 Mar;86(Pt 3):751-755 [PMID: 15722536]
  28. Bioinformatics. 2010 Oct 15;26(20):2615-6 [PMID: 20801911]
  29. J Cell Sci. 2015 Apr 15;128(8):1607-16 [PMID: 25717002]
  30. Nature. 2011 Apr 7;472(7341):105-9 [PMID: 21475200]
  31. Science. 1993 May 28;260(5112):1273-9 [PMID: 8493571]
  32. Nature. 2001 Apr 19;410(6831):995-1001 [PMID: 11309630]
  33. J Acquir Immune Defic Syndr. 2017 Apr 1;74(4):e104-e113 [PMID: 27749601]
  34. Retrovirology. 2009 Feb 16;6:18 [PMID: 19220914]
  35. Nat Rev Genet. 2004 Jul;5(7):522-31 [PMID: 15211354]
  36. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  37. J Virol. 1992 Apr;66(4):2232-9 [PMID: 1548759]
  38. J Biomed Biotechnol. 2009;2009:594738 [PMID: 19759918]
  39. Nature. 2003 Sep 25;425(6956):415-9 [PMID: 14508493]
  40. Nature. 1995 Aug 10;376(6540):530-3 [PMID: 7637788]
  41. Nature. 2005 Aug 4;436(7051):740-4 [PMID: 15973356]
  42. Virology. 2013 Sep;444(1-2):191-202 [PMID: 23849790]
  43. Annu Rev Cell Dev Biol. 2007;23:175-205 [PMID: 17506695]
  44. J Biol Chem. 2015 May 29;290(22):13736-48 [PMID: 25873391]
  45. Immunol Rev. 2013 Jul;254(1):265-80 [PMID: 23772625]
  46. PLoS One. 2012;7(5):e37511 [PMID: 22701517]
  47. Curr Top Med Chem. 2003;3(13):1447-57 [PMID: 14529520]
  48. Cell. 2004 Jan 23;116(2):281-97 [PMID: 14744438]
  49. Biosci Rep. 2017 Nov 29;37(6): [PMID: 29074557]
  50. RNA. 2007 Nov;13(11):1894-910 [PMID: 17872505]
  51. BMC Mol Biol. 2007 Jul 30;8:63 [PMID: 17663774]
  52. J Biol Chem. 1991 May 5;266(13):8590-4 [PMID: 2022670]

MeSH Term

DEAD-box RNA Helicases
DNA-Binding Proteins
Down-Regulation
HIV Infections
HIV-1
HeLa Cells
Humans
Jurkat Cells
MCF-7 Cells
MicroRNAs
Nuclear Pore Complex Proteins
RNA-Binding Proteins
Ribonuclease III
Transcription Factors
Virus Replication

Chemicals

AGFG1 protein, human
DNA-Binding Proteins
MicroRNAs
Nuclear Pore Complex Proteins
RNA-Binding Proteins
Transcription Factors
HIVEP2 protein, human
DICER1 protein, human
Ribonuclease III
DEAD-box RNA Helicases

Word Cloud

Created with Highcharts 10.0.0HIV-1infectionexpressionhumanmiRNADicer1HRBHIV-EP2celltherebyregulate3'210222viralmayreplicationcausativeagentAIDSAutoimmuneDeficiencySyndromeresultssystemicCD4+Tdepletionimpairingcell-mediatedimmunityMicroRNAsshort~22nucleotideslongendogenoussingle-strandedRNAmoleculesgenebindinguntranslatedregionsUTRmRNAtranscriptsrelationprofilepreviouslyinvestigatedstudiesshownviruscanalterviceversabroadenunderstandingprocessshowmiRNA-186up-regulatedfollowingSup-T1cellsresulthosttargetgenes:Double-StrandedRNA-SpecificEndoribonucleaseRev-bindingproteinHumanImmunodeficiencyVirusTypeEnhancerBindingProtein2down-regulatedMoreovertestingmiRNA-geneanti-correlationJurkatHeLa-MAGIlinesdemonstratedabilitymiRNAsdown-regulatewellconcludefoundmiR-186directlygenesthusfillingkeyrolesbiogenesisfindingcontributedevelopmentnewtherapeuticstrategiesincreasesmicroRNAsinhibitreducing

Similar Articles

Cited By