Sex differences in aggression: Differential roles of 5-HT2, neuropeptide F and tachykinin.

Andrew N Bubak, Michael J Watt, Kenneth J Renner, Abigail A Luman, Jamie D Costabile, Erin J Sanders, Jaime L Grace, John G Swallow
Author Information
  1. Andrew N Bubak: Department of Neurology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, United States of America.
  2. Michael J Watt: Center for Brain and Behavior Research, Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, United States of America. ORCID
  3. Kenneth J Renner: Biology Department, University of South Dakota, Vermillion, South Dakota, United States of America.
  4. Abigail A Luman: Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America.
  5. Jamie D Costabile: Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America.
  6. Erin J Sanders: Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America.
  7. Jaime L Grace: Department of Biology, Bradley University, Peoria, Illinois, United States of America. ORCID
  8. John G Swallow: Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America. ORCID

Abstract

Despite the conserved function of aggression across taxa in obtaining critical resources such as food and mates, serotonin's (5-HT) modulatory role on aggressive behavior appears to be largely inhibitory for vertebrates but stimulatory for invertebrates. However, critical gaps exist in our knowledge of invertebrates that need to be addressed before definitively stating opposing roles for 5-HT and aggression. Specifically, the role of 5-HT receptor subtypes are largely unknown, as is the potential interactive role of 5-HT with other neurochemical systems known to play a critical role in aggression. Similarly, the influence of these systems in driving sex differences in aggressive behavior of invertebrates is not well understood. Here, we investigated these questions by employing complementary approaches in a novel invertebrate model of aggression, the stalk-eyed fly. A combination of altered social conditions, pharmacological manipulation and 5-HT2 receptor knockdown by siRNA revealed an inhibitory role of this receptor subtype on aggression. Additionally, we provide evidence for 5-HT2's involvement in regulating neuropeptide F activity, a suspected inhibitor of aggression. However, this function appears to be stage-specific, altering only the initiation stage of aggressive conflicts. Alternatively, pharmacologically increasing systemic concentrations of 5-HT significantly elevated the expression of the neuropeptide tachykinin, which did not affect contest initiation but instead promoted escalation via production of high intensity aggressive behaviors. Notably, these effects were limited solely to males, with female aggression and neuropeptide expression remaining unaltered by any manipulation that affected 5-HT. Together, these results demonstrate a more nuanced role for 5-HT in modulating aggression in invertebrates, revealing an important interactive role with neuropeptides that is more reminiscent of vertebrates. The sex-differences described here also provide valuable insight into the evolutionary contexts of this complex behavior.

References

  1. PLoS One. 2013 Sep 06;8(9):e74965 [PMID: 24040368]
  2. Eur J Pharmacol. 2009 Jun 2;611(1-3):35-43 [PMID: 19344710]
  3. Front Integr Neurosci. 2013 May 23;7:40 [PMID: 23734105]
  4. Curr Biol. 2014 Nov 17;24(22):2700-7 [PMID: 25447998]
  5. Curr Opin Neurobiol. 2013 Jun;23(3):330-8 [PMID: 23680385]
  6. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12742-7 [PMID: 15314215]
  7. Behav Brain Res. 2013 Nov 1;256:354-61 [PMID: 23933143]
  8. Curr Top Behav Neurosci. 2012;12:73-138 [PMID: 22297576]
  9. Brain Res. 1996 Jun 17;724(2):232-7 [PMID: 8828573]
  10. PLoS One. 2013 Sep 18;8(9):e74489 [PMID: 24058575]
  11. J Neurosci Methods. 2013 Sep 30;219(1):124-30 [PMID: 23891953]
  12. Life Sci. 1983 Dec 26;33(26):2609-14 [PMID: 6198573]
  13. Psychiatry Res. 1979 Oct;1(2):131-9 [PMID: 95232]
  14. Behav Brain Res. 2015 Oct 1;292:521-7 [PMID: 26188180]
  15. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  16. Brain Res. 2007 Feb 16;1133(1):53-66 [PMID: 17184745]
  17. J Neurosci. 2008 Sep 24;28(39):9828-39 [PMID: 18815267]
  18. J Comp Neurol. 1986 Sep 15;251(3):363-75 [PMID: 2429996]
  19. Neuropsychopharmacology. 1999 Aug;21(2 Suppl):99S-105S [PMID: 10432495]
  20. Brain Res. 1996 Feb 5;708(1-2):173-6 [PMID: 8720874]
  21. Pharmacopsychiatry. 1995 Oct;28 Suppl 2:80-90 [PMID: 8614705]
  22. Brain Behav Evol. 1997;50 Suppl 1:60-8 [PMID: 9217993]
  23. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  24. Psychopharmacology (Berl). 1993;110(1-2):53-59 [PMID: 7870899]
  25. J Pers Soc Psychol. 2001 Dec;81(6):1058-69 [PMID: 11761307]
  26. Nat Rev Neurosci. 2007 Jul;8(7):536-46 [PMID: 17585306]
  27. Cell Tissue Res. 1997 Apr;288(1):191-206 [PMID: 9042786]
  28. Science. 1980 Apr 4;208(4439):76-9 [PMID: 17731572]
  29. Behav Processes. 2009 Sep;82(1):81-4 [PMID: 19615616]
  30. Eur J Pharmacol. 2005 Dec 5;526(1-3):259-73 [PMID: 16289029]
  31. Neuroscience. 2009 Feb 18;158(4):1292-300 [PMID: 19041376]
  32. Eur J Neurosci. 2016 May;43(9):1219-28 [PMID: 26950265]
  33. Cell Tissue Res. 2001 Oct;306(1):143-56 [PMID: 11683175]
  34. Neuroscience. 1996 May;72(2):557-66 [PMID: 8737424]
  35. PLoS One. 2010 May 24;5(5):e10806 [PMID: 20520823]
  36. Neuropeptides. 2001 Apr;35(2):82-91 [PMID: 11384203]
  37. Science. 1982 Apr 23;216(4544):409-11 [PMID: 6176023]
  38. Curr Opin Neurobiol. 1997 Dec;7(6):812-9 [PMID: 9464985]
  39. Neurochem Int. 2014 Jul;73:71-88 [PMID: 24704795]
  40. Arch Insect Biochem Physiol. 2001 Sep;48(1):13-38 [PMID: 11519073]
  41. Comp Biochem Physiol A Mol Integr Physiol. 2001 Apr;128(4):791-804 [PMID: 11282322]
  42. PLoS One. 2016 Nov 15;11(11):e0166417 [PMID: 27846261]
  43. Peptides. 2009 Aug;30(8):1586-91 [PMID: 19442694]
  44. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Jul;199(7):601-9 [PMID: 23463029]
  45. J Morphol. 2010 Dec;271(12):1509-26 [PMID: 20960464]
  46. Psychopharmacology (Berl). 2011 Feb;213(2-3):183-212 [PMID: 20938650]
  47. Acta Neurobiol Exp (Wars). 2013;73(4):495-520 [PMID: 24457641]
  48. Cell Tissue Res. 2010 Apr;340(1):13-28 [PMID: 20151154]
  49. Behav Brain Res. 2014 Feb 1;259:137-42 [PMID: 24211450]
  50. Nat Genet. 2007 May;39(5):678-82 [PMID: 17450142]
  51. Curr Zool. 2016 Jun;62(3):257-263 [PMID: 29491913]
  52. Cell. 2014 Jan 16;156(1-2):221-35 [PMID: 24439378]
  53. Microsc Res Tech. 2003 Feb 15;60(3):360-8 [PMID: 12539165]
  54. Brain Res. 2000 Mar 24;859(2):224-32 [PMID: 10719068]
  55. Neuroscience. 1991;42(3):757-75 [PMID: 1720227]
  56. J Neurogenet. 2009;23(4):378-94 [PMID: 19863269]
  57. Behav Brain Res. 1996 Feb;75(1-2):27-32 [PMID: 8800657]
  58. Ecol Evol. 2015 May;5(9):1826-36 [PMID: 26140199]
  59. J Exp Biol. 2007 Aug;210(Pt 16):2873-84 [PMID: 17690236]
  60. J Exp Biol. 2006 Dec;209(Pt 23):4581-9 [PMID: 17114393]
  61. PLoS One. 2013 May 31;8(5):e65052 [PMID: 23741451]

MeSH Term

5-Hydroxytryptophan
Aggression
Animals
Behavior Observation Techniques
Behavior, Animal
Diptera
Female
Gene Knockdown Techniques
Male
Models, Animal
Neuropeptides
RNA, Small Interfering
Receptors, Serotonin, 5-HT2
Serotonin
Sex Characteristics
Tachykinins

Chemicals

Neuropeptides
RNA, Small Interfering
Receptors, Serotonin, 5-HT2
Tachykinins
neuropeptide F
Serotonin
5-Hydroxytryptophan

Word Cloud

Created with Highcharts 10.0.0aggression5-HTroleaggressiveinvertebratesneuropeptidecriticalbehaviorreceptorfunctionappearslargelyinhibitoryvertebratesHoweverrolesinteractivesystemsdifferencesmanipulation5-HT2provideFinitiationexpressiontachykininDespiteconservedacrosstaxaobtainingresourcesfoodmatesserotonin'smodulatorystimulatorygapsexistknowledgeneedaddresseddefinitivelystatingopposingSpecificallysubtypesunknownpotentialneurochemicalknownplaySimilarlyinfluencedrivingsexwellunderstoodinvestigatedquestionsemployingcomplementaryapproachesnovelinvertebratemodelstalk-eyedflycombinationalteredsocialconditionspharmacologicalknockdownsiRNArevealedsubtypeAdditionallyevidence5-HT2'sinvolvementregulatingactivitysuspectedinhibitorstage-specificalteringstageconflictsAlternativelypharmacologicallyincreasingsystemicconcentrationssignificantlyelevatedaffectcontestinsteadpromotedescalationviaproductionhighintensitybehaviorsNotablyeffectslimitedsolelymalesfemaleremainingunalteredaffectedTogetherresultsdemonstratenuancedmodulatingrevealingimportantneuropeptidesreminiscentsex-differencesdescribedalsovaluableinsightevolutionarycontextscomplexSexaggression:Differential

Similar Articles

Cited By