Whole-Genome Sequencing for Drug Resistance Profile Prediction in .

Sebastian M Gygli, Peter M Keller, Marie Ballif, Nicolas Blöchliger, Rico Hömke, Miriam Reinhard, Chloé Loiseau, Claudia Ritter, Peter Sander, Sonia Borrell, Jimena Collantes Loo, Anchalee Avihingsanon, Joachim Gnokoro, Marcel Yotebieng, Matthias Egger, Sebastien Gagneux, Erik C Böttger
Author Information
  1. Sebastian M Gygli: Swiss Tropical and Public Health Institute, Basel, Switzerland.
  2. Peter M Keller: Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
  3. Marie Ballif: Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
  4. Nicolas Blöchliger: Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
  5. Rico Hömke: Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
  6. Miriam Reinhard: Swiss Tropical and Public Health Institute, Basel, Switzerland.
  7. Chloé Loiseau: Swiss Tropical and Public Health Institute, Basel, Switzerland.
  8. Claudia Ritter: Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
  9. Peter Sander: Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
  10. Sonia Borrell: Swiss Tropical and Public Health Institute, Basel, Switzerland.
  11. Jimena Collantes Loo: Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
  12. Anchalee Avihingsanon: HIV-NAT/Thai Red Cross AIDS Research Centre, Bangkok, Thailand.
  13. Joachim Gnokoro: Centre de Prise en Charge de Recherche et de Formation, Yopougon, Abidjan, Côte d'Ivoire.
  14. Marcel Yotebieng: College of Public Health, Ohio State University, Columbus, Ohio, USA.
  15. Matthias Egger: Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
  16. Sebastien Gagneux: Swiss Tropical and Public Health Institute, Basel, Switzerland sebastien.gagneux@swisstph.ch boettger@imm.uzh.ch.
  17. Erik C Böttger: Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland sebastien.gagneux@swisstph.ch boettger@imm.uzh.ch.

Abstract

Whole-genome sequencing allows rapid detection of drug-resistant isolates. However, the availability of high-quality data linking quantitative phenotypic drug susceptibility testing (DST) and genomic data have thus far been limited. We determined drug resistance profiles of 176 genetically diverse clinical isolates from the Democratic Republic of the Congo, Ivory Coast, Peru, Thailand, and Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD Bactec MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic DST readout. We compared DST results with predicted drug resistance profiles inferred by whole-genome sequencing. Classification of strains by the two phenotypic DST methods into resistotype/wild-type populations was concordant in 73 to 99% of cases, depending on the drug. Our data suggest that the established critical concentration (5 mg/liter) for ethambutol resistance (MGIT 960 system) is too high and misclassifies strains as susceptible, unlike 7H10 agar dilution. Increased minimal inhibitory concentrations were explained by mutations identified by whole-genome sequencing. Using whole-genome sequences, we were able to predict quantitative drug resistance levels for the majority of drug resistance mutations. Predicting quantitative levels of drug resistance by whole-genome sequencing was partially limited due to incompletely understood drug resistance mechanisms. The overall sensitivity and specificity of whole-genome-based DST were 86.8% and 94.5%, respectively. Despite some limitations, whole-genome sequencing has the potential to infer resistance profiles without the need for time-consuming phenotypic methods.

Keywords

References

  1. Lancet. 1986 Feb 8;1(8476):307-10 [PMID: 2868172]
  2. Sci Rep. 2018 Jun 26;8(1):9676 [PMID: 29946139]
  3. Antimicrob Agents Chemother. 2014;58(1):11-8 [PMID: 24100497]
  4. Am J Respir Crit Care Med. 2016 Sep 1;194(5):621-30 [PMID: 26910495]
  5. Nat Genet. 2014 Mar;46(3):279-86 [PMID: 24464101]
  6. Antimicrob Agents Chemother. 2012 May;56(5):2420-7 [PMID: 22330913]
  7. Int J Epidemiol. 2012 Oct;41(5):1256-64 [PMID: 21593078]
  8. Infect Dis (Lond). 2016;48(1):1-17 [PMID: 26167849]
  9. Int J Mycobacteriol. 2016 Mar;5(1):1-6 [PMID: 26927983]
  10. J Clin Microbiol. 2017 Jun;55(6):1871-1882 [PMID: 28381603]
  11. J Clin Microbiol. 2016 Aug;54(8):2058-67 [PMID: 27225403]
  12. Clin Orthop Relat Res. 2005 Aug;(437):3-6 [PMID: 16056018]
  13. N Engl J Med. 2015 Nov 12;373(20):1986-8 [PMID: 26559594]
  14. FEMS Microbiol Rev. 2017 May 1;41(3):354-373 [PMID: 28369307]
  15. Nat Genet. 2013 Oct;45(10):1190-7 [PMID: 23995136]
  16. RNA. 2016 Dec;22(12):1836-1843 [PMID: 27698071]
  17. Diagn Microbiol Infect Dis. 2016 Jun;85(2):177-81 [PMID: 27036978]
  18. J Clin Microbiol. 2014 Mar;52(3):940-6 [PMID: 24403306]
  19. Clin Infect Dis. 2018 Aug 16;67(5):708-716 [PMID: 29514175]
  20. EBioMedicine. 2016 Jul;9:228-237 [PMID: 27333026]
  21. Clin Infect Dis. 2015 Oct 15;61Suppl 3:S141-6 [PMID: 26409275]
  22. J Clin Microbiol. 2016 Jun;54(6):1624-1630 [PMID: 27076658]
  23. PLoS Med. 2015 Sep 29;12(9):e1001880 [PMID: 26418737]
  24. Lancet Infect Dis. 2015 Oct;15(10):1193-1202 [PMID: 26116186]
  25. J Antimicrob Chemother. 1995 Mar;35(3):381-90 [PMID: 7782254]
  26. J Antimicrob Chemother. 2018 May 1;73(5):1138-1151 [PMID: 29360989]
  27. Evol Med Public Health. 2013 Jan;2013(1):65-74 [PMID: 24481187]
  28. Bull World Health Organ. 2012 Sep 1;90(9):693-8 [PMID: 22984314]
  29. Clin Microbiol Infect. 2011 Aug;17(8):1128-34 [PMID: 21631641]
  30. N Engl J Med. 2018 Oct 11;379(15):1403-1415 [PMID: 30280646]
  31. Antimicrob Agents Chemother. 2018 Aug 27;62(9): [PMID: 29941636]
  32. Clin Microbiol Infect. 2017 Mar;23(3):154-160 [PMID: 27810467]
  33. J Clin Microbiol. 2009 Jun;47(6):1773-80 [PMID: 19339475]
  34. Int J Tuberc Lung Dis. 2016 Jan;20(1):24-42 [PMID: 26688526]
  35. PLoS Biol. 2017 Apr 18;15(4):e2001741 [PMID: 28419091]
  36. Genome Med. 2015 May 27;7(1):51 [PMID: 26019726]
  37. J Clin Microbiol. 2016 Jul;54(7):1862-1870 [PMID: 27194683]
  38. Antimicrob Agents Chemother. 2012 Jun;56(6):3047-53 [PMID: 22470121]
  39. Eur Respir J. 2017 Dec 28;50(6): [PMID: 29284687]
  40. Sci Rep. 2017 Nov 7;7(1):14647 [PMID: 29116204]

Grants

  1. U01 AI096299/NIAID NIH HHS
  2. U01 AI069923/NIAID NIH HHS
  3. U01 AI069919/NIAID NIH HHS
  4. U01 AI069907/NIAID NIH HHS
  5. U01 AI069924/NIAID NIH HHS

MeSH Term

Antitubercular Agents
Democratic Republic of the Congo
Drug Resistance, Multiple, Bacterial
Ethambutol
Genome, Bacterial
Genotype
Humans
Microbial Sensitivity Tests
Mutation
Mycobacterium tuberculosis
Peru
Phenotype
Switzerland
Thailand
Tuberculosis, Multidrug-Resistant
Whole Genome Sequencing

Chemicals

Antitubercular Agents
Ethambutol

Word Cloud

Created with Highcharts 10.0.0drugresistancesequencingphenotypicDSTwhole-genomequantitativedataprofilesisolatessusceptibilitytestinglimitedMGIT960system7H10agardilutionstrainsmethodsmutationslevelsWhole-genomeallowsrapiddetectiondrug-resistantHoweveravailabilityhigh-qualitylinkinggenomicthusfardetermined176geneticallydiverseclinicalDemocraticRepublicCongoIvoryCoastPeruThailandSwitzerland11antituberculousdrugsusingBDBactecgeneratecross-validatedreadoutcomparedresultspredictedinferredClassificationtworesistotype/wild-typepopulationsconcordant7399%casesdependingsuggestestablishedcriticalconcentration5 mg/literethambutolhighmisclassifiessusceptibleunlikeIncreasedminimalinhibitoryconcentrationsexplainedidentifiedUsingsequencesablepredictmajorityPredictingpartiallydueincompletelyunderstoodmechanismsoverallsensitivityspecificitywhole-genome-based868%945%respectivelyDespitelimitationspotentialinferwithoutneedtime-consumingWhole-GenomeSequencingDrugResistanceProfilePredictionMycobacteriumtuberculosislevelprediction

Similar Articles

Cited By