Genome wide association study discovers genomic regions involved in resistance to soybean cyst nematode (Heterodera glycines) in common bean.

Shalu Jain, Susilo Poromarto, Juan M Osorno, Phillip E McClean, Berlin D Nelson
Author Information
  1. Shalu Jain: Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America. ORCID
  2. Susilo Poromarto: Department of Agrotechnology, Sebelas Maret University, Surakarta, Jawa Tengah, Indonesia.
  3. Juan M Osorno: Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America.
  4. Phillip E McClean: Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America.
  5. Berlin D Nelson: Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America.

Abstract

Common bean (Phaseolus vulgaris L.) is an important high protein crop grown worldwide. North Dakota and Minnesota are the largest producers of common beans in the USA, but crop production is threatened by soybean cyst nematode (SCN; Heterodera glycines Ichinohe) because most current cultivars are susceptible. Greenhouse screening data using SCN HG type 0 from 317 plant introductions (PI's) from the USDA core collection was used to conduct a genome wide association study (GWAS). These lines were divided into two subpopulations based on principal component analysis (Middle American vs. Andean). Phenotypic results based on the female index showed that accessions could be classified as highly resistant (21% and 27%), moderately resistant (51% and 48%), moderately susceptible (27% and 22%) and highly susceptible (1% and 3%) for Middle American and Andean gene pools, respectively. Mixed models with two principal components (PCs) and kinship matrix for Middle American genotypes and Andean genotypes were used in the GWAS analysis using 3,985 and 4,811 single nucleotide polymorphic (SNP) markers, respectively which were evenly distributed across all 11 chromosomes. Significant peaks on Pv07, and Pv11 in Middle American and on Pv07, Pv08, Pv09 and Pv11 in Andean group were found to be associated with SCN resistance. Homologs of soybean rhg1, a locus which confers resistance to SCN in soybean, were identified on chromosomes Pv01 and Pv08 in the Middle American and Andean gene pools, respectively. These genomic regions may be the key to develop SCN-resistant Common bean cultivars.

References

  1. Mol Ecol. 2015 Apr;24(8):1774-91 [PMID: 25735447]
  2. Plant Dis. 2004 Nov;88(11):1287 [PMID: 30795338]
  3. Nat Commun. 2017 Mar 27;8:14822 [PMID: 28345654]
  4. Theor Appl Genet. 2005 Sep;111(5):965-71 [PMID: 16075207]
  5. Front Plant Sci. 2017 Jul 06;8:1183 [PMID: 28729876]
  6. Plant Dis. 2009 May;93(5):507-511 [PMID: 30764138]
  7. Science. 2012 Nov 30;338(6111):1206-9 [PMID: 23065905]
  8. Theor Appl Genet. 2010 Nov;121(7):1253-66 [PMID: 20559815]
  9. Nat Genet. 2014 Jul;46(7):707-13 [PMID: 24908249]
  10. PLoS One. 2015 Dec 29;10(12):e0145601 [PMID: 26714307]
  11. BMC Genomics. 2015 Aug 12;16:593 [PMID: 26263897]
  12. PLoS One. 2017 Jan 11;12(1):e0169954 [PMID: 28076395]
  13. Plant Physiol. 2014 Apr 14;165(2):630-647 [PMID: 24733883]
  14. Plant Dis. 2005 Oct;89(10):1020-1026 [PMID: 30791267]
  15. J Am Diet Assoc. 2009 May;109(5):909-13 [PMID: 19394480]
  16. Front Plant Sci. 2018 Jun 06;9:767 [PMID: 29928287]
  17. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  18. Appl Physiol Nutr Metab. 2014 Nov;39(11):1197-204 [PMID: 25061763]
  19. PLoS One. 2016 Jul 21;11(7):e0159338 [PMID: 27441552]
  20. Nature. 2012 Dec 13;492(7428):256-60 [PMID: 23235880]
  21. BMC Genomics. 2015 Aug 13;16:598 [PMID: 26268218]
  22. Phytopathology. 2021 Nov;111(11):2100-2109 [PMID: 33851860]
  23. Plant Sci. 2016 Jan;242:351-357 [PMID: 26566851]
  24. Curr Opin Biotechnol. 2006 Apr;17(2):155-60 [PMID: 16504497]
  25. Trends Cell Biol. 2005 Nov;15(11):626-31 [PMID: 16168654]
  26. Cell. 1990 Jan 26;60(2):307-17 [PMID: 2404612]
  27. Funct Plant Biol. 2011 Dec;38(12):953-967 [PMID: 32480954]
  28. Bioinformatics. 2007 Feb 15;23(4):498-9 [PMID: 17145741]
  29. BMC Genomics. 2010 Mar 18;11:184 [PMID: 20298570]
  30. J Nematol. 2003 Mar;35(1):23-8 [PMID: 19265970]
  31. Plant Genome. 2016 Jul;9(2): [PMID: 27898820]
  32. Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19585-90 [PMID: 20974948]
  33. Nat Genet. 2010 Apr;42(4):355-60 [PMID: 20208535]
  34. Heredity (Edinb). 2013 Mar;110(3):267-76 [PMID: 23169559]
  35. Cell. 1990 Jan 26;60(2):319-28 [PMID: 2297790]
  36. Sci Rep. 2017 Mar 24;7:45226 [PMID: 28338077]
  37. Theor Appl Genet. 2009 Apr;118(6):1093-105 [PMID: 19184662]
  38. Plant Dis. 2010 Nov;94(11):1299-1304 [PMID: 30743635]
  39. Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7375-E7382 [PMID: 27821740]
  40. Mol Biol Cell. 2013 May;24(10):1593-601 [PMID: 23515225]

MeSH Term

Animals
Disease Resistance
Genome, Plant
Genome-Wide Association Study
Phaseolus
Phenotype
Plant Diseases
Polymorphism, Single Nucleotide
Tylenchoidea

Word Cloud

Created with Highcharts 10.0.0MiddleAmericanAndeansoybeanSCNbeancommonsusceptiblerespectivelyresistancecropcystnematodeHeteroderaglycinescultivarsusingusedwideassociationstudyGWAStwobasedprincipalanalysishighlyresistant27%moderatelygenepoolsgenotypeschromosomesPv07Pv11Pv08genomicregionsCommonPhaseolusvulgarisLimportanthighproteingrownworldwideNorthDakotaMinnesotalargestproducersbeansUSAproductionthreatenedIchinohecurrentGreenhousescreeningdataHGtype0317plantintroductionsPI'sUSDAcorecollectionconductgenomelinesdividedsubpopulationscomponentvsPhenotypicresultsfemaleindexshowedaccessionsclassified21%51%48%22%1%3%MixedmodelscomponentsPCskinshipmatrix39854811singlenucleotidepolymorphicSNPmarkersevenlydistributedacross11SignificantpeaksPv09groupfoundassociatedHomologsrhg1locusconfersidentifiedPv01maykeydevelopSCN-resistantGenomediscoversinvolved

Similar Articles

Cited By (5)