NMR model structure of the antimicrobial peptide maximin 3.

Silvia Benetti, Patrick Brendan Timmons, Chandralal M Hewage
Author Information
  1. Silvia Benetti: UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland. ORCID
  2. Patrick Brendan Timmons: UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland. ORCID
  3. Chandralal M Hewage: UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland. chandralal.hewage@ucd.ie. ORCID

Abstract

Maximin 3 is a 27-residue-long cationic antimicrobial peptide found in the skin secretion and brain of the Chinese red-belly toad Bombina maxima. The peptide is of biological interest as it possesses anti-HIV activity, not found in the other maximin peptides, in addition to antimicrobial, antitumor and spermicidal activities. The three-dimensional structure of maximin 3 was obtained in a 50/50% water/2,2,2-trifluoroethanol-d mixture using two-dimensional NMR spectroscopy. Maximin 3 was found to adopt an α-helical structure from residue G1 to A22, and a coil structure with a helical propensity in the C-terminal tail. The peptide is amphipathic, showing a clear separation between polar and hydrophobic residues. Interactions with sodium dodecyl sulfate micelles, a widely used bacterial membrane-mimicking environment, were modeled using molecular dynamics simulations. The peptide maintained an α-helical conformation, occasionally displaying a flexibility around residues G9 and G16, which is likely responsible for the peptide's low haemolytic activity. It is found to preferentially adopt a position parallel to the micellar surface, establishing a number of hydrophobic and electrostatic interactions with it.

Keywords

References

  1. J Bacteriol. 1999 Aug;181(16):4725-33 [PMID: 10438737]
  2. Biochemistry. 2000 Jul 25;39(29):8362-73 [PMID: 10913242]
  3. Contraception. 2000 Aug;62(2):99-103 [PMID: 11102594]
  4. Peptides. 2002 Mar;23(3):427-35 [PMID: 11835991]
  5. Trends Immunol. 2002 Jun;23(6):291-6 [PMID: 12072367]
  6. Biopolymers. 2002 Sep;64(6):314-27 [PMID: 12124849]
  7. Biopolymers. 2002;66(4):236-48 [PMID: 12491537]
  8. Pharmacol Rev. 2003 Mar;55(1):27-55 [PMID: 12615953]
  9. Nat Struct Biol. 2003 Dec;10(12):980 [PMID: 14634627]
  10. Annu Rev Immunol. 2004;22:181-215 [PMID: 15032578]
  11. Int J Antimicrob Agents. 2004 Apr;23(4):382-9 [PMID: 15081088]
  12. J Comput Chem. 2004 Aug;25(11):1400-15 [PMID: 15185334]
  13. Biochem Biophys Res Commun. 2005 Feb 18;327(3):945-51 [PMID: 15649437]
  14. Nat Rev Microbiol. 2005 Mar;3(3):238-50 [PMID: 15703760]
  15. Curr Eye Res. 2005 Jul;30(7):505-15 [PMID: 16020284]
  16. J Comput Chem. 2005 Dec;26(16):1781-802 [PMID: 16222654]
  17. Eur Urol. 2006 Jul;50(1):141-7 [PMID: 16476519]
  18. Proc Biol Sci. 2006 Jan 22;273(1583):251-6 [PMID: 16555795]
  19. Biochim Biophys Acta. 2006 Sep;1758(9):1436-49 [PMID: 16678118]
  20. Nat Rev Microbiol. 2008 Apr;6(4):276-87 [PMID: 18327271]
  21. Biochim Biophys Acta. 2008 Jun;1784(6):924-9 [PMID: 18387372]
  22. J Mol Biol. 1991 Feb 5;217(3):517-30 [PMID: 1847217]
  23. Mol Cell Biochem. 2009 Dec;332(1-2):43-50 [PMID: 19513817]
  24. Chembiochem. 2009 Aug 17;10(12):2089-99 [PMID: 19591185]
  25. FEBS J. 2009 Nov;276(22):6474-82 [PMID: 19817857]
  26. Biochim Biophys Acta. 2010 Apr;1804(4):1020-8 [PMID: 20116461]
  27. Eur Biophys J. 2011 Apr;40(4):447-62 [PMID: 21234559]
  28. Res Microbiol. 2011 May;162(4):363-74 [PMID: 21320593]
  29. J Proteome Res. 2011 Apr 1;10(4):1806-15 [PMID: 21338048]
  30. Biochim Biophys Acta. 2011 Aug;1808(8):1975-84 [PMID: 21565166]
  31. Eur Biophys J. 2011 Sep;40(9):1087-100 [PMID: 21748492]
  32. J Biol Chem. 2012 Mar 2;287(10):7738-45 [PMID: 22253439]
  33. J Biomed Mater Res A. 2012 Jul;100(7):1803-14 [PMID: 22489028]
  34. J Comput Chem. 2013 Jun 5;34(15):1332-40 [PMID: 23447371]
  35. ChemMedChem. 2013 Oct;8(10):1638-42 [PMID: 23894079]
  36. J Phys Chem B. 1998 Apr 30;102(18):3586-616 [PMID: 24889800]
  37. Bioinformatics. 2015 Apr 15;31(8):1325-7 [PMID: 25505092]
  38. J Biomol NMR. 2015 Aug;62(4):453-71 [PMID: 25801209]
  39. J Biol Chem. 2015 Aug 7;290(32):19853-62 [PMID: 26100634]
  40. Pharmaceuticals (Basel). 2016 Mar 11;9(1):null [PMID: 26978373]
  41. Curr Protein Pept Sci. 2017;18(11):1098-1119 [PMID: 27526932]
  42. Chem Biol Drug Des. 2017 Nov;90(5):690-702 [PMID: 28371431]
  43. Oncotarget. 2017 Jul 11;8(28):46635-46651 [PMID: 28422728]
  44. Mediators Inflamm. 2017;2017:5186904 [PMID: 28839349]
  45. Antonie Van Leeuwenhoek. 2018 Jan;111(1):5-26 [PMID: 28856473]
  46. J Phys Chem B. 2018 Jun 7;122(22):5908-5921 [PMID: 29737852]
  47. Biotechnol Rep (Amst). 2018 Jul 20;19:e00275 [PMID: 30197871]
  48. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449-53 [PMID: 3299384]
  49. Biochim Biophys Acta. 1973 Oct 11;323(2):178-93 [PMID: 4356540]
  50. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1-6 [PMID: 7417242]
  51. J Mol Biol. 1995 Jan 13;245(2):180-94 [PMID: 7799434]
  52. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  53. FEBS Lett. 1996 Sep 2;392(3):309-12 [PMID: 8774869]
  54. Lipids. 1996 Jul;31(7):765-70 [PMID: 8827700]
  55. J Biomol NMR. 1997 Feb;9(2):127-35 [PMID: 9090128]

MeSH Term

Amino Acid Sequence
Antimicrobial Cationic Peptides
Magnetic Resonance Spectroscopy
Molecular Dynamics Simulation
Protein Conformation

Chemicals

Antimicrobial Cationic Peptides

Word Cloud

Created with Highcharts 10.0.0peptide3foundmaximinstructureantimicrobialNMRMaximinactivityusingadoptα-helicalhydrophobicresidues27-residue-longcationicskinsecretionbrainChinesered-bellytoadBombinamaximabiologicalinterestpossessesanti-HIVpeptidesadditionantitumorspermicidalactivitiesthree-dimensionalobtained50/50%water/222-trifluoroethanol-dmixturetwo-dimensionalspectroscopyresidueG1A22coilhelicalpropensityC-terminaltailamphipathicshowingclearseparationpolarInteractionssodiumdodecylsulfatemicelleswidelyusedbacterialmembrane-mimickingenvironmentmodeledmoleculardynamicssimulationsmaintainedconformationoccasionallydisplayingflexibilityaroundG9G16likelyresponsiblepeptide'slowhaemolyticpreferentiallypositionparallelmicellarsurfaceestablishingnumberelectrostaticinteractionsitmodelAMPmodelingAntimicrobial

Similar Articles

Cited By