Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference.

Younhee Ko, Jaebum Kim, Sandra L Rodriguez-Zas
Author Information
  1. Younhee Ko: Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, 17035, South Korea.
  2. Jaebum Kim: Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea. jbkim@konkuk.ac.kr.
  3. Sandra L Rodriguez-Zas: Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA. rodrgzzs@illinois.edu.

Abstract

BACKGROUND: Simultaneous measurement of gene expression level for thousands of genes contains the rich information about many different aspects of biological mechanisms. A major computational challenge is to find methods to extract new biological insights from this wealth of data. Complex biological processes are often regulated under the various conditions or circumstances and associated gene interactions are dynamically changed depending on different biological contexts. Thus, inference of such dynamic relationships between genes with consideration of biological conditions is very challenging.
METHOD: In this study, we propose a comprehensive and integrated approach to infer the dynamic relationships between genes and evaluate this approach on three distinct gene networks.
RESULTS: This study demonstrates the advantage of integrating Markov chain Monte Carlo (MCMC) simulation into a Bayesian mixture model to overcome the high-dimension, low sample size (HDLSS) problem as well as to identify context-specific biological modules. Such biological modules were identified through the summarization of sampled network structures obtained from MCMC simulation.
CONCLUSION: This novel approach gives a comprehensive understanding of the dynamically regulated biological modules.

Keywords

References

  1. Pac Symp Biocomput. 2000;:418-29 [PMID: 10902190]
  2. Pac Symp Biocomput. 2004;:336-47 [PMID: 14992515]
  3. Stat Appl Genet Mol Biol. 2007;6:Article15 [PMID: 17542777]
  4. J Bioinform Comput Biol. 2008 Jun;6(3):543-72 [PMID: 18574862]
  5. Int J Bioinform Res Appl. 2010;6(4):402-17 [PMID: 20940126]
  6. BMC Bioinformatics. 2006 Jun 02;7:280 [PMID: 16749936]
  7. Genome Res. 2012 Jul;22(7):1334-49 [PMID: 22456606]
  8. Bioinformatics. 2003 Oct;19 Suppl 2:ii227-36 [PMID: 14534194]
  9. Comput Syst Bioinformatics Conf. 2007;6:85-95 [PMID: 17951815]
  10. PLoS Comput Biol. 2016 Aug 01;12(8):e1005024 [PMID: 27479082]
  11. Cell Syst. 2017 Sep 27;5(3):251-267.e3 [PMID: 28957658]
  12. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D378-82 [PMID: 15608220]
  13. Genome Biol. 2003;4(5):R34 [PMID: 12734014]
  14. Bioinformatics. 2012 May 15;28(10):1376-82 [PMID: 22467911]
  15. J Comput Biol. 2000;7(3-4):601-20 [PMID: 11108481]
  16. PLoS Comput Biol. 2008 Apr 18;4(4):e1000054 [PMID: 18421371]
  17. Nat Biotechnol. 2003 Nov;21(11):1337-42 [PMID: 14555958]
  18. BMC Syst Biol. 2009 May 19;3:54 [PMID: 19454027]
  19. Bioinformatics. 2008 Aug 15;24(16):i76-82 [PMID: 18689844]
  20. PLoS One. 2010 Sep 28;5(9): [PMID: 20927193]
  21. Bioinformatics. 2015 Jun 15;31(12):i230-9 [PMID: 26072487]
  22. BMC Bioinformatics. 2016 Dec 28;17(1):545 [PMID: 28031031]
  23. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 [PMID: 9843981]
  24. Genome Biol. 2007;8(1):R4 [PMID: 17204163]
  25. Genome Biol. 2009;10(3):R27 [PMID: 19265557]
  26. Pac Symp Biocomput. 2006;:559-71 [PMID: 17094269]
  27. PLoS Comput Biol. 2014 Jun 12;10(6):e1003666 [PMID: 24921649]

MeSH Term

Algorithms
Bayes Theorem
Computational Biology
Gene Expression Profiling
Gene Regulatory Networks
Humans
Markov Chains
Monte Carlo Method

Word Cloud

Created with Highcharts 10.0.0biologicalgenegenesapproachMarkovchainMonteCarlosimulationBayesianmixturemodelmodulesnetworkdifferentregulatedconditionsdynamicallyinferencedynamicrelationshipsstudycomprehensiveMCMCBACKGROUND:SimultaneousmeasurementexpressionlevelthousandscontainsrichinformationmanyaspectsmechanismsmajorcomputationalchallengefindmethodsextractnewinsightswealthdataComplexprocessesoftenvariouscircumstancesassociatedinteractionschangeddependingcontextsThusconsiderationchallengingMETHOD:proposeintegratedinferevaluatethreedistinctnetworksRESULTS:demonstratesadvantageintegratingovercomehigh-dimensionlowsamplesizeHDLSSproblemwellidentifycontext-specificidentifiedsummarizationsampledstructuresobtainedCONCLUSION:novelgivesunderstandingGene

Similar Articles

Cited By