Leaf-associated microbiomes of grafted tomato plants.

Hirokazu Toju, Koji Okayasu, Michitaka Notaguchi
Author Information
  1. Hirokazu Toju: Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2133, Japan. toju.hirokazu.4c@kyoto-u.ac.jp. ORCID
  2. Koji Okayasu: Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
  3. Michitaka Notaguchi: Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.

Abstract

Bacteria and fungi form complex communities (microbiomes) in above- and below-ground organs of plants, contributing to hosts' growth and survival in various ways. Recent studies have suggested that host plant genotypes control, at least partly, plant-associated microbiome compositions. However, we still have limited knowledge of how microbiome structures are determined in/on grafted crop plants, whose above-ground (scion) and below-ground (rootstock) genotypes are different with each other. By using eight varieties of grafted tomato plants, we examined how rootstock genotypes could determine the assembly of leaf endophytic microbes in field conditions. An Illumina sequencing analysis showed that both bacterial and fungal community structures did not significantly differ among tomato plants with different rootstock genotypes: rather, sampling positions in the farmland contributed to microbiome variation in a major way. Nonetheless, a further analysis targeting respective microbial taxa suggested that some bacteria and fungi could be preferentially associated with particular rootstock treatments. Specifically, a bacterium in the genus Deinococcus was found disproportionately from ungrafted tomato individuals. In addition, yeasts in the genus Hannaella occurred frequently on the tomato individuals whose rootstock genotype was "Ganbarune". Overall, this study suggests to what extent leaf microbiome structures can be affected/unaffected by rootstock genotypes in grafted crop plants.

References

  1. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E425-34 [PMID: 23319638]
  2. PLoS Genet. 2014 Apr 17;10(4):e1004283 [PMID: 24743269]
  3. Front Microbiol. 2015 Dec 01;6:1372 [PMID: 26648932]
  4. PLoS One. 2014 Nov 04;9(11):e111786 [PMID: 25369054]
  5. Appl Environ Microbiol. 2019 Jan 9;85(2): [PMID: 30413478]
  6. Int J Syst Evol Microbiol. 2004 Nov;54(Pt 6):2269-2273 [PMID: 15545469]
  7. Microbiome. 2018 Jan 3;6(1):3 [PMID: 29298729]
  8. Cell Host Microbe. 2017 Aug 9;22(2):142-155 [PMID: 28799900]
  9. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16428-33 [PMID: 19805315]
  10. FEMS Microbiol Rev. 2013 Sep;37(5):634-63 [PMID: 23790204]
  11. Nat Plants. 2018 May;4(5):247-257 [PMID: 29725101]
  12. ISME J. 2016 Mar;10(3):632-43 [PMID: 26305156]
  13. Nature. 2017 Mar 23;543(7646):513-518 [PMID: 28297714]
  14. New Phytol. 2015 Jun;206(4):1196-206 [PMID: 25655016]
  15. Front Plant Sci. 2014 Dec 17;5:727 [PMID: 25566298]
  16. Science. 1994 Nov 4;266(5186):789-93 [PMID: 7973631]
  17. FEMS Yeast Res. 2008 Aug;8(5):799-814 [PMID: 18616607]
  18. Nature. 2015 Dec 17;528(7582):364-9 [PMID: 26633631]
  19. J Microbiol Methods. 2013 Jun;93(3):203-5 [PMID: 23541956]
  20. Plant Signal Behav. 2011 Apr;6(4):510-5 [PMID: 21673511]
  21. Mol Ecol. 2016 Jul;25(13):3242-57 [PMID: 27136380]
  22. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15649-54 [PMID: 14671327]
  23. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10181-6 [PMID: 12928499]
  24. Phytopathology. 1997 Jun;87(6):588-93 [PMID: 18945074]
  25. Phytopathology. 2001 Mar;91(3):249-54 [PMID: 18943343]
  26. IMA Fungus. 2017 Jun;8(1):117-129 [PMID: 28824844]
  27. Genetics. 2004 Sep;168(1):21-33 [PMID: 15454524]
  28. Nat Methods. 2008 Mar;5(3):235-7 [PMID: 18264105]
  29. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  30. ISME J. 2012 Jul;6(7):1378-90 [PMID: 22189496]
  31. Appl Environ Microbiol. 2003 Apr;69(4):1875-83 [PMID: 12676659]
  32. Fungal Biol. 2014 Aug;118(8):683-94 [PMID: 25110131]
  33. J Microbiol. 2014 Aug;52(8):689-95 [PMID: 24994010]
  34. Antonie Van Leeuwenhoek. 2015 Jun;107(6):1475-90 [PMID: 25842038]
  35. Int J Syst Evol Microbiol. 2014 Dec;64(Pt 12):4134-4140 [PMID: 25256704]
  36. Mol Plant Microbe Interact. 1991 Jan-Feb;4(1):52-9 [PMID: 1799694]
  37. Nat Rev Microbiol. 2012 Dec;10(12):828-40 [PMID: 23154261]
  38. Fungal Biol. 2013 May;117(5):311-8 [PMID: 23719218]
  39. PLoS Biol. 2016 Jan 20;14(1):e1002352 [PMID: 26788878]
  40. Nature. 2018 Apr;556(7700):235-238 [PMID: 29618812]
  41. PLoS One. 2012;7(7):e40863 [PMID: 22808280]
  42. Appl Environ Microbiol. 2011 May;77(10):3202-10 [PMID: 21421777]
  43. Plant Physiol. 2013 Apr;161(4):2014-22 [PMID: 23388119]
  44. Antonie Van Leeuwenhoek. 2016 Dec;109(12):1615-1634 [PMID: 27578202]
  45. Science. 2009 May 1;324(5927):649-51 [PMID: 19407205]
  46. FEMS Microbiol Ecol. 2004 Mar 1;47(3):319-26 [PMID: 19712320]
  47. J Bacteriol. 1996 Feb;178(3):633-7 [PMID: 8550493]
  48. J Exp Bot. 2006;57(15):4025-32 [PMID: 17043084]
  49. Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):557-72 [PMID: 17715053]
  50. PeerJ. 2016 Oct 18;4:e2584 [PMID: 27781170]
  51. J R Soc Interface. 2016 Mar;13(116): [PMID: 26962029]
  52. PLoS One. 2013 Oct 18;8(10):e76910 [PMID: 24204702]
  53. FEMS Yeast Res. 2005 Dec;5(12):1167-83 [PMID: 16081324]
  54. Mol Plant Pathol. 2012 May;13(4):414-30 [PMID: 22471698]
  55. J Appl Microbiol. 2008 Dec;105(6):1744-55 [PMID: 19120625]
  56. Science. 2011 May 27;332(6033):1097-100 [PMID: 21551032]
  57. Nat Rev Genet. 2010 Aug;11(8):539-48 [PMID: 20585331]
  58. Nat Biotechnol. 2018 Oct 08;: [PMID: 30295674]
  59. PLoS Biol. 2017 Mar 28;15(3):e2001793 [PMID: 28350798]
  60. Curr Microbiol. 2006 Oct;53(4):270-6 [PMID: 16941245]
  61. Appl Environ Microbiol. 2012 Aug;78(16):5529-35 [PMID: 22660707]
  62. Front Plant Sci. 2015 Mar 18;6:161 [PMID: 25852714]
  63. Genome Res. 2007 Mar;17(3):377-86 [PMID: 17255551]
  64. New Phytol. 2015 Sep;207(4):1134-44 [PMID: 25898906]
  65. Ecol Lett. 2015 Aug;18(8):807-816 [PMID: 26032408]
  66. PLoS One. 2014 Sep 11;9(9):e106704 [PMID: 25211235]
  67. Cell Host Microbe. 2015 Mar 11;17(3):392-403 [PMID: 25732064]
  68. PLoS One. 2014 Dec 02;9(12):e114196 [PMID: 25464336]
  69. Cell. 2016 Apr 7;165(2):464-74 [PMID: 26997485]
  70. Nat Rev Microbiol. 2016 Jul;14(7):434-47 [PMID: 27296482]
  71. Nature. 2016 Apr 28;532(7600):421-2 [PMID: 27121815]
  72. Trends Ecol Evol. 2004 Oct;19(10):535-44 [PMID: 16701319]
  73. Trends Plant Sci. 2016 May;21(5):418-437 [PMID: 26698413]
  74. Sci Rep. 2016 Dec 22;6:39403 [PMID: 28004784]
  75. Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20 [PMID: 25605935]
  76. Mol Plant Microbe Interact. 2015 Mar;28(3):212-7 [PMID: 25514681]
  77. Annu Rev Phytopathol. 2005;43:395-436 [PMID: 16078890]
  78. Nat Methods. 2013 Oct;10(10):999-1002 [PMID: 23995388]
  79. Int J Syst Evol Microbiol. 2015 Apr;65(Pt 4):1297-1303 [PMID: 25644481]
  80. Plant Dis. 2012 Jul;96(7):973-978 [PMID: 30727209]
  81. Microbiome. 2018 Jan 27;6(1):18 [PMID: 29374490]

MeSH Term

Bacteria
DNA, Plant
Fungi
Solanum lycopersicum
Microbiota
Plant Leaves
RNA, Ribosomal, 16S

Chemicals

DNA, Plant
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0plantsrootstocktomatogenotypesmicrobiomegraftedstructuresfungimicrobiomesbelow-groundsuggestedcropwhosedifferentleafanalysisgenusindividualsBacteriaformcomplexcommunitiesabove-organscontributinghosts'growthsurvivalvariouswaysRecentstudieshostplantcontrolleastpartlyplant-associatedcompositionsHoweverstilllimitedknowledgedeterminedin/onabove-groundscionusingeightvarietiesexamineddetermineassemblyendophyticmicrobesfieldconditionsIlluminasequencingshowedbacterialfungalcommunitysignificantlydifferamonggenotypes:rathersamplingpositionsfarmlandcontributedvariationmajorwayNonethelesstargetingrespectivemicrobialtaxabacteriapreferentiallyassociatedparticulartreatmentsSpecificallybacteriumDeinococcusfounddisproportionatelyungraftedadditionyeastsHannaellaoccurredfrequentlygenotype"Ganbarune"Overallstudysuggestsextentcanaffected/unaffectedLeaf-associated

Similar Articles

Cited By