Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15.

Sebastian Funk, Anton Camacho, Adam J Kucharski, Rachel Lowe, Rosalind M Eggo, W John Edmunds
Author Information
  1. Sebastian Funk: Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom. ORCID
  2. Anton Camacho: Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom. ORCID
  3. Adam J Kucharski: Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.
  4. Rachel Lowe: Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom. ORCID
  5. Rosalind M Eggo: Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom. ORCID
  6. W John Edmunds: Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.

Abstract

Real-time forecasts based on mathematical models can inform critical decision-making during infectious disease outbreaks. Yet, epidemic forecasts are rarely evaluated during or after the event, and there is little guidance on the best metrics for assessment. Here, we propose an evaluation approach that disentangles different components of forecasting ability using metrics that separately assess the calibration, sharpness and bias of forecasts. This makes it possible to assess not just how close a forecast was to reality but also how well uncertainty has been quantified. We used this approach to analyse the performance of weekly forecasts we generated in real time for Western Area, Sierra Leone, during the 2013-16 Ebola epidemic in West Africa. We investigated a range of forecast model variants based on the model fits generated at the time with a semi-mechanistic model, and found that good probabilistic calibration was achievable at short time horizons of one or two weeks ahead but model predictions were increasingly unreliable at longer forecasting horizons. This suggests that forecasts may have been of good enough quality to inform decision making based on predictions a few weeks ahead of time but not longer, reflecting the high level of uncertainty in the processes driving the trajectory of the epidemic. Comparing forecasts based on the semi-mechanistic model to simpler null models showed that the best semi-mechanistic model variant performed better than the null models with respect to probabilistic calibration, and that this would have been identified from the earliest stages of the outbreak. As forecasts become a routine part of the toolkit in public health, standards for evaluation of performance will be important for assessing quality and improving credibility of mathematical models, and for elucidating difficulties and trade-offs when aiming to make the most useful and reliable forecasts.

References

  1. Stat Med. 2017 Sep 30;36(22):3443-3460 [PMID: 28656694]
  2. Nat Commun. 2017 Oct 13;8(1):925 [PMID: 29030543]
  3. PLoS Curr. 2015 Jan 30;7: [PMID: 25685632]
  4. J R Soc Interface. 2016 Oct;13(123): [PMID: 27733698]
  5. PLoS Curr. 2014 Sep 18;6: [PMID: 25642357]
  6. Science. 2015 Mar 13;347(6227):aaa4339 [PMID: 25766240]
  7. PLoS Curr. 2014 Nov 06;6: [PMID: 25685630]
  8. PLoS Biol. 2015 Jan 13;13(1):e1002056 [PMID: 25585384]
  9. Philos Trans R Soc Lond B Biol Sci. 2017 May 26;372(1721): [PMID: 28396473]
  10. Infect Dis Model. 2017 Aug;2(3):379-398 [PMID: 29250607]
  11. PLoS Comput Biol. 2018 Jul 24;14(7):e1006202 [PMID: 30040815]
  12. Science. 2005 Oct 14;310(5746):248-9 [PMID: 16224011]
  13. Emerg Infect Dis. 2015 Nov;21(11):1897-905 [PMID: 26484940]
  14. PLoS Comput Biol. 2015 Jul 30;11(7):e1004383 [PMID: 26226185]
  15. Biometrics. 2009 Dec;65(4):1254-61 [PMID: 19432783]
  16. Proc Biol Sci. 2015 Jun 7;282(1808):20150205 [PMID: 25948687]
  17. PLoS Curr. 2015 Feb 10;7: [PMID: 25737806]
  18. PLoS Comput Biol. 2017 Nov 6;13(11):e1005801 [PMID: 29107987]
  19. BMC Infect Dis. 2016 Jul 22;16:357 [PMID: 27449080]
  20. MMWR Suppl. 2014 Sep 26;63(3):1-14 [PMID: 25254986]
  21. Lancet Infect Dis. 2014 Dec;14(12):1189-95 [PMID: 25455986]
  22. Elife. 2015 Dec 08;4: [PMID: 26646185]
  23. BMJ Open. 2015 Dec 15;5(12):e009346 [PMID: 26671958]
  24. Vaccine. 2017 Jan 23;35(4):544-551 [PMID: 28024952]
  25. Epidemics. 2018 Mar;22:13-21 [PMID: 28958414]
  26. Biometrics. 2010 Dec;66(4):1295-305 [PMID: 20353460]
  27. Euro Surveill. 2014 Sep 11;19(36): [PMID: 25232919]
  28. Lancet Infect Dis. 2015 Feb;15(2):204-11 [PMID: 25575618]
  29. Sci Rep. 2016 Sep 26;6:33707 [PMID: 27665707]
  30. PLoS Curr. 2013 Jun 21;5: [PMID: 23873050]
  31. Nat Commun. 2019 Feb 22;10(1):898 [PMID: 30796206]
  32. PLoS Curr. 2015 Mar 09;7: [PMID: 26064785]
  33. N Engl J Med. 2014 Oct 16;371(16):1481-95 [PMID: 25244186]
  34. J Infect Dis. 2016 Dec 1;214(suppl_4):S404-S408 [PMID: 28830111]
  35. BMC Med. 2017 Mar 1;15(1):42 [PMID: 28245814]
  36. Lancet Infect Dis. 2014 Jul;14(7):619-26 [PMID: 24841859]
  37. Epidemics. 2018 Mar;22:56-61 [PMID: 28038870]
  38. Infect Genet Evol. 2015 Dec;36:35-40 [PMID: 26343852]
  39. PLoS Med. 2011 Jul;8(7):e1001051 [PMID: 21750666]
  40. PLoS Negl Trop Dis. 2015 Aug 24;9(8):e0004000 [PMID: 26302380]
  41. PLoS Curr. 2014 Sep 08;6: [PMID: 25642358]

Grants

  1. MR/J01432X/1/Medical Research Council
  2. 210758/Z/18/Z/Wellcome Trust
  3. MR/J01432X/1/Medical Research Council
  4. MR/K021524/1/Medical Research Council
  5. MR/K021524/1/Medical Research Council
  6. 206250/Z/17/Z/Wellcome Trust
  7. MR/K021680/1/Medical Research Council
  8. /Wellcome Trust
  9. MR/S003975/1/Medical Research Council

MeSH Term

Decision Making
Disease Outbreaks
Epidemics
Epidemiologic Methods
Forecasting
Hemorrhagic Fever, Ebola
Humans
Models, Statistical
Models, Theoretical
Sierra Leone
Time

Word Cloud

Created with Highcharts 10.0.0forecastsmodelbasedmodelsepidemictimecalibrationperformancesemi-mechanisticmathematicalinformbestmetricsevaluationapproachforecastingassessforecastuncertaintygeneratedWesternAreaSierraLeoneEbolagoodprobabilistichorizonsweeksaheadpredictionslongerqualitynullReal-timecancriticaldecision-makinginfectiousdiseaseoutbreaksYetrarelyevaluatedeventlittleguidanceassessmentproposedisentanglesdifferentcomponentsabilityusingseparatelysharpnessbiasmakespossiblejustcloserealityalsowellquantifiedusedanalyseweeklyreal2013-16WestAfricainvestigatedrangevariantsfitsfoundachievableshortonetwoincreasinglyunreliablesuggestsmayenoughdecisionmakingreflectinghighlevelprocessesdrivingtrajectoryComparingsimplershowedvariantperformedbetterrespectidentifiedearlieststagesoutbreakbecomeroutineparttoolkitpublichealthstandardswillimportantassessingimprovingcredibilityelucidatingdifficultiestrade-offsaimingmakeusefulreliableAssessingreal-timeforecasts:casestudyregion2014-15

Similar Articles

Cited By