Pepper Rootstock and Scion Physiological Responses Under Drought Stress.

Lidia López-Serrano, Guillermo Canet-Sanchis, Gabriela Vuletin Selak, Consuelo Penella, Alberto San Bautista, Salvador López-Galarza, Ángeles Calatayud
Author Information
  1. Lidia López-Serrano: Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain.
  2. Guillermo Canet-Sanchis: Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain.
  3. Gabriela Vuletin Selak: Department of Plant Science, Institute for Adriatic Crops and Karst Reclamation, Split, Croatia.
  4. Consuelo Penella: Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain.
  5. Alberto San Bautista: Departamento de Producción Vegetal, Universitat Politècnica de València, Valencia, Spain.
  6. Salvador López-Galarza: Departamento de Producción Vegetal, Universitat Politècnica de València, Valencia, Spain.
  7. Ángeles Calatayud: Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain.

Abstract

In vegetables, tolerance to drought can be improved by grafting commercial varieties onto drought tolerant rootstocks. Grafting has emerged as a tool that copes with drought stress. In previous results, the A25 pepper rootstock accession showed good tolerance to drought in fruit production terms compared with non-grafted plants and other rootstocks. The aim of this work was to study if short-term exposure to drought in grafted plants using A25 as a rootstock would show tolerance to drought now. To fulfill this objective, some physiological processes involved in roots (rootstock) and leaves (scion) of grafted pepper plants were analyzed. Pepper plants not grafted (A), self-grafted (A/A), and grafted onto a tolerant pepper rootstock A25 (A/A25) were grown under severe water stress induced by PEG addition (-0.55 MPa) or under control conditions for 7 days in hydroponic pure solution. According to our results, water stress severity was alleviated by using the A25 rootstock in grafted plants (A/A25), which indicated that mechanisms stimulated by roots are essential to withstand stress. A/A25 had a bigger root biomass compared with plants A and A/A that resulted in better water absorption, water retention capacity and a sustained CO assimilation rate. Consequently, plants A/A25 had a better carbon balance, supported by greater nitrate reductase activity located mainly in leaves. In the non-grafted and self-grafted plants, the photosynthesis rate lowered due to stomatal closure, which limited transpiration. Consequently, part of NO uptake was reduced in roots. This condition limited water uptake and CO fixation in plants A and A/A under drought stress, and accelerated oxidative damage by producing reactive oxygen species (ROS) and HO, which were highest in their leaves, indicating great sensitivity to drought stress and induced membrane lipid peroxidation. However, drought deleterious effects were slightly marked in plants A compared to A/A. To conclude, the A25 rootstock protects the scion against oxidative stress, which is provoked by drought, and shows better C and N balances that enabled the biomass to be maintained under water stress for short-term exposure, with higher yields in the field.

Keywords

References

  1. Plant Biol (Stuttg). 2004 May;6(3):269-79 [PMID: 15143435]
  2. Plant Cell Environ. 2014 Dec;37(12):2768-80 [PMID: 24773056]
  3. Front Plant Sci. 2017 Dec 14;8:2068 [PMID: 29312367]
  4. Plant Signal Behav. 2012 Jul;7(7):767-70 [PMID: 22751307]
  5. Plant Physiol. 1999 Mar;119(3):1091-100 [PMID: 10069848]
  6. Front Plant Sci. 2012 Mar 02;3:39 [PMID: 22645583]
  7. Front Plant Sci. 2017 May 12;8:741 [PMID: 28553298]
  8. Arch Biochem Biophys. 1968 Apr;125(1):189-98 [PMID: 5655425]
  9. J Exp Bot. 2009;60(8):2361-77 [PMID: 19351904]
  10. Plant Sci. 2016 Oct;251:90-100 [PMID: 27593467]
  11. J Plant Physiol. 2004 Nov;161(11):1189-202 [PMID: 15602811]
  12. J Exp Bot. 2005 Feb;56(412):703-12 [PMID: 15557292]
  13. New Phytol. 2012 Apr;194(1):230-244 [PMID: 22300532]
  14. Planta. 1985 Jul;164(4):540-9 [PMID: 24248230]
  15. J Plant Physiol. 2016 Apr 1;193:1-11 [PMID: 26918569]
  16. Front Plant Sci. 2017 Jun 30;8:1130 [PMID: 28713405]
  17. J Plant Physiol. 2014 Jun 15;171(10):842-51 [PMID: 24877676]
  18. Plant Sci. 2012 Jun;188-189:89-96 [PMID: 22525248]
  19. Plant J. 2017 Jun;90(5):898-917 [PMID: 27987327]
  20. J Exp Bot. 2000 Sep;51(350):1595-616 [PMID: 11006310]
  21. Plant Physiol. 2001 Jul;126(3):1196-204 [PMID: 11457969]
  22. Biochem Biophys Res Commun. 1971 Jun 18;43(6):1274-9 [PMID: 5106073]
  23. J Exp Bot. 2001 Oct;52(363):1981-9 [PMID: 11559733]
  24. J Exp Bot. 2006;57(5):1045-58 [PMID: 16520333]
  25. Sci Rep. 2016 Feb 02;6:20212 [PMID: 26832070]
  26. Funct Plant Biol. 2013 Jul;40(6):628-636 [PMID: 32481136]
  27. Front Plant Sci. 2017 Jun 29;8:1147 [PMID: 28706531]
  28. Front Plant Sci. 2016 Aug 31;7:1335 [PMID: 27630659]
  29. J Exp Bot. 2002 Jul;53(374):1635-42 [PMID: 12096102]
  30. Front Chem. 2018 Feb 19;6:26 [PMID: 29520357]
  31. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:601-639 [PMID: 15012221]
  32. J Exp Bot. 2004 Jun;55(401):1275-82 [PMID: 15107452]

Word Cloud

Created with Highcharts 10.0.0droughtplantsstressrootstockwatergraftedA25pepperA/AA/A25tolerancecomparedrootsleavesbetteroxidativeontotolerantrootstocksresultsnon-graftedshort-termexposureusingscionPepperself-graftedinducedbiomassCOrateConsequentlylimiteduptakevegetablescanimprovedgraftingcommercialvarietiesGraftingemergedtoolcopespreviousaccessionshowedgoodfruitproductiontermsaimworkstudyshownowfulfillobjectivephysiologicalprocessesinvolvedanalyzedgrownseverePEGaddition-055MPacontrolconditions7dayshydroponicpuresolutionAccordingseverityalleviatedindicatedmechanismsstimulatedessentialwithstandbiggerrootresultedabsorptionretentioncapacitysustainedassimilationcarbonbalancesupportedgreaternitratereductaseactivitylocatedmainlyphotosynthesisloweredduestomatalclosuretranspirationpartNOreducedconditionfixationaccelerateddamageproducingreactiveoxygenspeciesROSHOhighestindicatinggreatsensitivitymembranelipidperoxidationHoweverdeleteriouseffectsslightlymarkedconcludeprotectsprovokedshowsCNbalancesenabledmaintainedhigheryieldsfieldRootstockScionPhysiologicalResponsesDroughtStressgasexchangerelations

Similar Articles

Cited By