Quantifying dynamic mechanisms of auto-regulation in Escherichia coli with synthetic promoter in response to varying external phosphate levels.

Cansu Uluşeker, Jesús Torres-Bacete, José L García, Martin M Hanczyc, Juan Nogales, Ozan Kahramanoğulları
Author Information
  1. Cansu Uluşeker: University of Trento, Centre for Integrative Biology, Trento, 38123, Italy.
  2. Jesús Torres-Bacete: Centro Nacional de Biotecnología (CNB-CSIC), Systems Biology Department, Madrid, 28049, Spain.
  3. José L García: Centro de Investigaciones Biológicas (CIB-CSIC), Microbial and Plant Biotechnology Department, Madrid, 28040, Spain.
  4. Martin M Hanczyc: University of Trento, Centre for Integrative Biology, Trento, 38123, Italy. ORCID
  5. Juan Nogales: Centro Nacional de Biotecnología (CNB-CSIC), Systems Biology Department, Madrid, 28049, Spain.
  6. Ozan Kahramanoğulları: University of Trento, Department of Mathematics, Trento, 38123, Italy. ozan.kahramanogullari@unitn.it.

Abstract

Escherichia coli have developed one of the most efficient regulatory response mechanisms to phosphate starvation. The machinery involves a cascade with a two-component system (TCS) that relays the external signal to the genetic circuit, resulting in a feedback response. Achieving a quantitative understanding of this system has implications in synthetic biology and biotechnology, for example, in applications for wastewater treatment. To this aim, we present a computational model and experimental results with a detailed description of the TCS, consisting of PhoR and PhoB, together with the mechanisms of gene expression. The model is parameterised within the feasible range, and fitted to the dynamic response of our experimental data on PhoB as well as PhoA, the product of this network that is used in alkaline phosphatase production. Deterministic and stochastic simulations with our model predict the regulation dynamics in higher external phosphate concentrations while reproducing the experimental observations. In a cycle of simulations and experimental verification, our model predicts and explores phenotypes with various synthetic promoter designs that can optimise the inorganic phosphate intake in E. coli. Sensitivity analysis demonstrates that the Pho-controlled genes have a significant influence over the phosphate response. Together with experimental findings, our model should thus provide insights for the investigations on engineering new sensors and regulators for living technologies.

References

  1. Biotechnol Bioeng. 1998 Jun 5;58(5):502-9 [PMID: 10099286]
  2. Biotechnol Bioeng. 1998 Apr 20-May 5;58(2-3):191-5 [PMID: 10191389]
  3. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9 [PMID: 11438714]
  4. J Bacteriol. 2001 Sep;183(17):5008-14 [PMID: 11489853]
  5. Science. 2002 Aug 16;297(5584):1183-6 [PMID: 12183631]
  6. Microbiology. 2004 Sep;150(Pt 9):2985-92 [PMID: 15347756]
  7. Chembiochem. 2004 Nov 5;5(11):1535-42 [PMID: 15515087]
  8. Biosystems. 2004 Dec;78(1-3):23-37 [PMID: 15555756]
  9. Mol Microbiol. 2005 Jul;57(1):1-8 [PMID: 15948944]
  10. Science. 2006 Mar 17;311(5767):1600-3 [PMID: 16543458]
  11. Genes Dev. 2006 Apr 1;20(7):884-97 [PMID: 16600914]
  12. J Bacteriol. 2007 Mar;189(5):1974-82 [PMID: 17158656]
  13. BMC Biotechnol. 2007 Jun 18;7:34 [PMID: 17572914]
  14. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5 [PMID: 18077424]
  15. FEMS Microbiol Rev. 2008 May;32(3):461-73 [PMID: 18248418]
  16. Curr Opin Biotechnol. 2008 Aug;19(4):369-74 [PMID: 18662776]
  17. Microbiology. 2008 Sep;154(Pt 9):2887-95 [PMID: 18757823]
  18. Cell. 2008 Oct 17;135(2):216-26 [PMID: 18957198]
  19. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17457-62 [PMID: 18987315]
  20. Annu Rev Microbiol. 2009;63:133-54 [PMID: 19575571]
  21. J Bacteriol. 2009 Dec;191(24):7436-46 [PMID: 19820090]
  22. Curr Opin Microbiol. 2010 Apr;13(2):184-9 [PMID: 20149717]
  23. Genome Biol Evol. 2010 Jul 16;2:478-87 [PMID: 20639316]
  24. Math Biosci. 2011 May;231(1):76-89 [PMID: 21385588]
  25. BMC Microbiol. 2011 Mar 25;11:62 [PMID: 21439067]
  26. J Biol Chem. 2013 Feb 22;288(8):5770-8 [PMID: 23192354]
  27. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):672-7 [PMID: 23267085]
  28. Nat Methods. 2013 Apr;10(4):354-60 [PMID: 23474465]
  29. PLoS Genet. 2013 Oct;9(10):e1003927 [PMID: 24204322]
  30. J Bacteriol. 2014 May;196(9):1741-52 [PMID: 24563032]
  31. Eur Phys J E Soft Matter. 2014 Sep;37(9):44 [PMID: 25260329]
  32. Virulence. 2014;5(8):786-93 [PMID: 25483775]
  33. Nat Commun. 2015 Jul 06;6:7445 [PMID: 26145755]
  34. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062712 [PMID: 26764732]
  35. Front Plant Sci. 2016 Mar 15;7:303 [PMID: 27014323]
  36. Biochem Soc Trans. 2016 Jun 15;44(3):731-7 [PMID: 27284035]
  37. J Bacteriol. 1987 Dec;169(12):5569-74 [PMID: 2824439]
  38. MBio. 2017 May 16;8(3): [PMID: 28512092]
  39. J Bacteriol. 2017 Aug 22;199(18): [PMID: 28674072]
  40. J Biol Chem. 1973 Aug 25;248(16):5794-805 [PMID: 4579429]
  41. Nucleic Acids Res. 1983 Apr 25;11(8):2237-55 [PMID: 6344016]
  42. Biochemistry. 1996 Apr 16;35(15):4732-40 [PMID: 8664263]
  43. Biotechnol Prog. 1997 Mar-Apr;13(2):132-43 [PMID: 9104037]
  44. Appl Environ Microbiol. 1998 Jan;64(1):82-7 [PMID: 9435063]
  45. J Theor Biol. 1998 Jan 7;190(1):37-49 [PMID: 9473389]

MeSH Term

Alkaline Phosphatase
Computational Biology
Computer Simulation
Escherichia coli
Escherichia coli Proteins
Gene Expression Regulation, Bacterial
Genes, Bacterial
Genes, Regulator
Homeostasis
Mutation
Phenotype
Phosphates
Promoter Regions, Genetic

Chemicals

Escherichia coli Proteins
Phosphates
Alkaline Phosphatase

Word Cloud

Created with Highcharts 10.0.0responsephosphatemodelexperimentalcolimechanismsexternalsyntheticEscherichiasystemTCSPhoBdynamicsimulationspromoterdevelopedoneefficientregulatorystarvationmachineryinvolvescascadetwo-componentrelayssignalgeneticcircuitresultingfeedbackAchievingquantitativeunderstandingimplicationsbiologybiotechnologyexampleapplicationswastewatertreatmentaimpresentcomputationalresultsdetaileddescriptionconsistingPhoRtogethergeneexpressionparameterisedwithinfeasiblerangefitteddatawellPhoAproductnetworkusedalkalinephosphataseproductionDeterministicstochasticpredictregulationdynamicshigherconcentrationsreproducingobservationscycleverificationpredictsexploresphenotypesvariousdesignscanoptimiseinorganicintakeESensitivityanalysisdemonstratesPho-controlledgenessignificantinfluenceTogetherfindingsthusprovideinsightsinvestigationsengineeringnewsensorsregulatorslivingtechnologiesQuantifyingauto-regulationvaryinglevels

Similar Articles

Cited By