High Hydrostatic Pressure Processing Better Preserves the Nutrient and Bioactive Compound Composition of Human Donor Milk.

Michael A Pitino, Sharon Unger, Alain Doyen, Yves Pouliot, Susanne Aufreiter, Debbie Stone, Alex Kiss, Deborah L O'Connor
Author Information
  1. Michael A Pitino: Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
  2. Sharon Unger: Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
  3. Alain Doyen: Département des Sciences des Aliments et de Nutrition, Institut sur la nutrition et les aliments fonctionnels, Centre de recherche STELA, Université Laval, Québec, Québec, Canada.
  4. Yves Pouliot: Département des Sciences des Aliments et de Nutrition, Institut sur la nutrition et les aliments fonctionnels, Centre de recherche STELA, Université Laval, Québec, Québec, Canada.
  5. Susanne Aufreiter: Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
  6. Debbie Stone: Rogers Hixon Ontario Human Milk Bank, Mount Sinai Hospital, Toronto, Ontario, Canada.
  7. Alex Kiss: Evaluative Clinical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
  8. Deborah L O'Connor: Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.

Abstract

BACKGROUND: When mother's milk is insufficient, pasteurized human donor milk (DM) is the recommended supplement for hospitalized very-low-birth-weight infants. The current method of pasteurization (Holder, 62.5°C, 30 min) negatively affects heat-sensitive nutrients and bioactive proteins.
OBJECTIVES: Objectives of this study were to compare changes in DM composition after thermal pasteurization (Holder and flash-heating) and nonthermal methods [UV-C irradiation and high hydrostatic pressure (HHP)]. We hypothesized that nonthermal techniques would result in fewer changes to composition.
METHODS: Holder, flash-heating (brought to boil), UV-C irradiation (250 nm, 25 min), and HHP (500 MPa, 8 min) were studied. Pools of milk from 17 women known to contain bacteria at >5 × 107 colony forming units (CFU)/L were collected from the Rogers Hixon Ontario Human Milk Bank and underwent each pasteurization technique. Macronutrients, heat-sensitive micronutrients (vitamin C, folate), and bioactive components [bile-salt-stimulated lipase (BSSL), lysozyme, lactoferrin] were measured in raw and pools of pasteurized milk. Milk was cultured to determine how well each technique produced a culture negative result (detection limit <1 × 103 CFU/L).
RESULTS: Folate was reduced by 24-27% after Holder, flash-heating, and UV-C (P < 0.05); no reduction was observed after HHP. All pasteurization methods reduced vitamin C (60-75%, P < 0.001). BSSL was abolished after Holder and flash-heating (P < 0.001), reduced after UV-C (48%, P < 0.001), but unaffected by HHP. Lysozyme activity was reduced after flash-heating (44%) and UV-C (74%, P < 0.004) but unaffected by Holder or HHP. Lactoferrin was reduced by all methods (P < 0.02) but most severely by flash-heating (74%) and least severely by HHP (25%). Holder and UV-C reduced lactoferrin by ∼48%. All pasteurization methods reduced the number of culture positive DM samples (P < 0.001).
CONCLUSIONS: HHP better preserves human milk composition than Holder pasteurization. Future research on the feasibility of HHP for pasteurizing human milk is warranted because its implementation may improve the nutritional status and health of DM-fed infants.

Keywords

References

  1. Nutrition. 2002 Jul-Aug;18(7-8):590-4 [PMID: 12093436]
  2. Biochemistry. 1997 Nov 25;36(47):14375-83 [PMID: 9398155]
  3. Cochrane Database Syst Rev. 2018 Jun 20;6:CD002971 [PMID: 29926476]
  4. Curr Opin Clin Nutr Metab Care. 2015 May;18(3):269-75 [PMID: 25769062]
  5. Biomed Chromatogr. 2013 Feb;27(2):197-202 [PMID: 22684820]
  6. Cochrane Database Syst Rev. 2017 Jun 28;6:CD007137 [PMID: 28658720]
  7. Breastfeed Med. 2014 Mar;9(2):86-91 [PMID: 23786311]
  8. J Dairy Sci. 2018 Apr;101(4):2814-2818 [PMID: 29397184]
  9. JAMA. 2016 Nov 8;316(18):1897-1905 [PMID: 27825008]
  10. Pediatr Neurol. 2016 Jun;59:54-61.e1 [PMID: 27318249]
  11. Acta Paediatr. 2007 Oct;96(10):1445-9 [PMID: 17714541]
  12. Int J Vitam Nutr Res. 2013;83(5):311-9 [PMID: 25305226]
  13. J Food Prot. 2008 Jan;71(1):109-18 [PMID: 18236670]
  14. Curr Dev Nutr. 2017 Aug 02;1(8):e001438 [PMID: 29955718]
  15. J Pediatr. 1994 Nov;125(5 Pt 2):S56-61 [PMID: 7965454]
  16. PLoS One. 2013 Jun 26;8(6):e68120 [PMID: 23840820]
  17. Methods Enzymol. 1997;281:43-53 [PMID: 9250965]
  18. J Dairy Sci. 2010 Mar;93(3):877-83 [PMID: 20172207]
  19. Am J Clin Nutr. 1991 Apr;53(4):930-4 [PMID: 1901195]
  20. Nutrients. 2017 Feb 22;9(2): [PMID: 28241418]
  21. Pediatr Res. 2009 Oct;66(4):374-9 [PMID: 19581827]
  22. J Chromatogr B Analyt Technol Biomed Life Sci. 2006 Jan 2;830(1):41-6 [PMID: 16263341]
  23. Int J Food Microbiol. 2004 Jul 15;94(2):123-35 [PMID: 15193800]
  24. J Matern Fetal Neonatal Med. 2016 Mar;29(5):763-70 [PMID: 25758631]
  25. J Acquir Immune Defic Syndr. 2008 Aug 1;48(4):444-9 [PMID: 18614920]
  26. Exp Biol Med (Maywood). 2005 Jul;230(7):444-54 [PMID: 15985619]
  27. J Virol Methods. 1992 Aug;38(2):255-61 [PMID: 1325473]
  28. J Acquir Immune Defic Syndr. 2005 Oct 1;40(2):175-81 [PMID: 16186735]
  29. Lancet. 2016 Jan 30;387(10017):475-90 [PMID: 26869575]
  30. Food Chem. 2014 May 15;151:79-85 [PMID: 24423505]
  31. J Dairy Sci. 2012 Nov;95(11):6230-41 [PMID: 23084715]
  32. J Pediatr Gastroenterol Nutr. 2010 Sep;51(3):347-52 [PMID: 20639776]
  33. J Pediatr Gastroenterol Nutr. 2017 Mar;64(3):353-361 [PMID: 27755345]
  34. Curr Drug Targets. 2018;19(5):439-450 [PMID: 26343111]
  35. Pediatr Clin North Am. 2013 Feb;60(1):189-207 [PMID: 23178065]
  36. PLoS One. 2016 Aug 18;11(8):e0161116 [PMID: 27537346]
  37. Anal Biochem. 2002 Nov 15;310(2):223-4 [PMID: 12423643]
  38. J Pediatr Gastroenterol Nutr. 2013 Sep;57(3):377-82 [PMID: 23752081]
  39. Front Biosci (Elite Ed). 2011 Jun 01;3(3):818-29 [PMID: 21622093]
  40. PLoS One. 2013 Dec 23;8(12):e85867 [PMID: 24376898]
  41. Arch Dis Child. 1987 Feb;62(2):161-5 [PMID: 3103547]
  42. Front Microbiol. 2018 May 11;9:926 [PMID: 29867837]
  43. J Pediatr. 1998 May;132(5):876-8 [PMID: 9602205]
  44. Breastfeed Med. 2011 Jun;6(3):111-6 [PMID: 21091243]
  45. Biochim Biophys Acta. 1952 Mar;8(3):302-9 [PMID: 14934741]
  46. J Nutr. 1982 Jul;112(7):1329-38 [PMID: 7097350]

Grants

  1. FDN #143233/CIHR

MeSH Term

Female
Hot Temperature
Humans
Hydrostatic Pressure
Milk Banks
Milk, Human
Nutrients
Pasteurization

Chemicals

Nutrients

Word Cloud

Created with Highcharts 10.0.0HolderHHPmilkpasteurizationflash-heatingreducedP < 0UV-Chumanmethods001DMmincompositionirradiationMilkpasteurizeddonorinfantsheat-sensitivebioactivechangesnonthermalhighhydrostaticpressureresultHumantechniquevitaminCBSSLcultureunaffected74%severelyBACKGROUND:mother'sinsufficientrecommendedsupplementhospitalizedvery-low-birth-weightcurrentmethod625°C30negativelyaffectsnutrientsproteinsOBJECTIVES:Objectivesstudycomparethermal[UV-C]hypothesizedtechniquesfewerMETHODS:broughtboil250nm25500MPa8studiedPools17womenknowncontainbacteria>5 × 107colonyformingunitsCFU/LcollectedRogersHixonOntarioBankunderwentMacronutrientsmicronutrientsfolatecomponents[bile-salt-stimulatedlipaselysozymelactoferrin]measuredrawpoolscultureddeterminewellproducednegativedetectionlimit<1 × 103CFU/LRESULTS:Folate24-27%05reductionobserved60-75%abolished48%Lysozymeactivity44%004Lactoferrin02least25%lactoferrin∼48%numberpositivesamplesCONCLUSIONS:betterpreservesFutureresearchfeasibilitypasteurizingwarrantedimplementationmayimprovenutritionalstatushealthDM-fedHighHydrostaticPressureProcessingBetterPreservesNutrientBioactiveCompoundCompositionDonorprocessing

Similar Articles

Cited By