Statistical outbreak detection by joining medical records and pathogen similarity.

James K Miller, Jieshi Chen, Alexander Sundermann, Jane W Marsh, Melissa I Saul, Kathleen A Shutt, Marissa Pacey, Mustapha M Mustapha, Lee H Harrison, Artur Dubrawski
Author Information
  1. James K Miller: Auton Lab, Carnegie Mellon University, Pittsburgh, PA, United States. Electronic address: mille856@andrew.cmu.edu.
  2. Jieshi Chen: Auton Lab, Carnegie Mellon University, Pittsburgh, PA, United States.
  3. Alexander Sundermann: Infectious Diseases Epidemiology Research Unit, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, PA, United States; Department of Infection Control and Hospital Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.
  4. Jane W Marsh: Infectious Diseases Epidemiology Research Unit, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, PA, United States.
  5. Melissa I Saul: Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
  6. Kathleen A Shutt: Infectious Diseases Epidemiology Research Unit, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, PA, United States.
  7. Marissa Pacey: Infectious Diseases Epidemiology Research Unit, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, PA, United States.
  8. Mustapha M Mustapha: Infectious Diseases Epidemiology Research Unit, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, PA, United States.
  9. Lee H Harrison: Infectious Diseases Epidemiology Research Unit, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, PA, United States.
  10. Artur Dubrawski: Auton Lab, Carnegie Mellon University, Pittsburgh, PA, United States.

Abstract

We present a statistical inference model for the detection and characterization of outbreaks of hospital associated infection. The approach combines patient exposures, determined from electronic medical records, and pathogen similarity, determined by whole-genome sequencing, to simultaneously identify probable outbreaks and their root-causes. We show how our model can be used to target isolates for whole-genome sequencing, improving outbreak detection and characterization even without comprehensive sequencing. Additionally, we demonstrate how to learn model parameters from reference data of known outbreaks. We demonstrate model performance using semi-synthetic experiments.

Keywords

References

  1. Mol Biol Evol. 2017 Apr 1;34(4):997-1007 [PMID: 28100788]
  2. N Engl J Med. 2014 Mar 27;370(13):1198-208 [PMID: 24670166]
  3. Ann Appl Stat. 2016 Mar;10(1):395-417 [PMID: 27042253]
  4. J Am Med Inform Assoc. 2010 Jan-Feb;17(1):42-8 [PMID: 20064800]
  5. Annu Rev Food Sci Technol. 2016;7:353-74 [PMID: 26772415]
  6. J Am Med Inform Assoc. 2013 Mar-Apr;20(2):369-72 [PMID: 22871398]
  7. Am J Infect Control. 2017 Dec 1;45(12):1372-1377 [PMID: 28844384]
  8. BMC Med. 2016 Mar 23;14:21 [PMID: 27005433]
  9. PLoS One. 2015 Dec 04;10(12):e0144310 [PMID: 26637170]
  10. Proc Biol Sci. 2008 Apr 22;275(1637):887-95 [PMID: 18230598]
  11. Infect Control Hosp Epidemiol. 2016 Apr;37(4):466-8 [PMID: 26996060]
  12. PLoS Pathog. 2018 Feb 8;14(2):e1006885 [PMID: 29420641]
  13. PLoS Comput Biol. 2014 Jan;10(1):e1003457 [PMID: 24465202]
  14. PLoS Comput Biol. 2016 Apr 12;12(4):e1004869 [PMID: 27070316]
  15. Genetics. 2014 Dec;198(4):1395-404 [PMID: 25313129]
  16. R Soc Open Sci. 2017 Mar 29;4(3):160721 [PMID: 28405360]
  17. J Virol. 2006 Nov;80(22):11274-82 [PMID: 16971422]
  18. J Am Med Inform Assoc. 2010 May-Jun;17(3):348-53 [PMID: 20442156]
  19. PLoS Comput Biol. 2015 Dec 30;11(12):e1004613 [PMID: 26717515]
  20. J Am Med Inform Assoc. 2011 Jul-Aug;18(4):491-7 [PMID: 21672911]
  21. J Biomed Inform. 2016 Dec;64:44-54 [PMID: 27612975]
  22. Emerg Infect Dis. 1997 Jul-Sep;3(3):395-400 [PMID: 9284390]
  23. Infect Control Hosp Epidemiol. 2016 Oct;37(10):1254-5 [PMID: 27571681]
  24. Infect Control Hosp Epidemiol. 2019 Mar;40(3):314-319 [PMID: 30773168]
  25. PLoS One. 2015 Jun 15;10(6):e0129745 [PMID: 26075402]
  26. Genome Biol. 2014 Nov 18;15(11):538 [PMID: 25418119]
  27. Heredity (Edinb). 2011 Feb;106(2):383-90 [PMID: 20551981]
  28. Stat Appl Genet Mol Biol. 2020 Oct 21;: [PMID: 33085643]
  29. J Am Med Inform Assoc. 2014 Sep-Oct;21(5):942-51 [PMID: 24421290]

Grants

  1. R01 AI127472/NIAID NIH HHS
  2. R21 AI109459/NIAID NIH HHS

MeSH Term

Cross Infection
Disease Outbreaks
Humans
Machine Learning
Medical Records
Models, Theoretical
United States

Word Cloud

Created with Highcharts 10.0.0modeldetectionsequencingoutbreaksmedicalrecordsinferencecharacterizationdeterminedpathogensimilaritywhole-genomeoutbreakdemonstrateStatisticalpresentstatisticalhospitalassociatedinfectionapproachcombinespatientexposureselectronicsimultaneouslyidentifyprobableroot-causesshowcanusedtargetisolatesimprovingevenwithoutcomprehensiveAdditionallylearnparametersreferencedataknownperformanceusingsemi-syntheticexperimentsjoiningElectronicEpidemiologyOutbreakTransmissionpathogensWholegenome

Similar Articles

Cited By