Comparative transcriptome analysis of resistant and susceptible kiwifruits in response to Pseudomonas syringae pv. Actinidiae during early infection.

Yalin Song, Leiming Sun, Miaomiao Lin, Jinyong Chen, Xiujuan Qi, Chungen Hu, Jinbao Fang
Author Information
  1. Yalin Song: Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
  2. Leiming Sun: Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
  3. Miaomiao Lin: Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
  4. Jinyong Chen: Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
  5. Xiujuan Qi: Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
  6. Chungen Hu: College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
  7. Jinbao Fang: Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China. ORCID

Abstract

Kiwifruit bacterial canker is a devastating disease threatening kiwifruit production. To clarify the defense mechanism in response to Pseudomonas syringae pv. actinidiae (Psa), we observed phenotypic changes in resistant Huate (HT) and susceptible Hongyang (HY) kiwifruit varieties at 0, 12, 24, 48, 96, and 144 hour after inoculation (hai) with Psa. Brown lesions appeared in the inoculation areas 12 hai in HY shoots, and the lesion length gradually increased from 24 to 144 h. In contrast, no lesions were found in HT shoots at any time points. Furthermore, RNA-seq analysis showed significantly more differentially expressed genes between HT and HY at 12 hai than at any other time point. According to weighted gene co-expression network analysis, five modules were notably differentially expressed between HT and HY; pathway mapping using the Kyoto Encyclopedia of Gene and Genomes database was performed for the five modules. In MEgreenyellow and MEyellow modules, pathways related to"plant-pathogen interaction", "Endocytosis", "Glycine, serine and threonine metabolism", and "Carbon fixation in photosynthetic organisms" were enriched, whereas in the MEblack module, pathways related to "protein processing in endoplasmic reticulum", "plant-pathogen interaction", and "Glycolysis / Gluconeogenesis" were enriched. In particular, the Pti1 and RPS2 encoding effector receptors, and the NPR1, TGA, and PR1 genes involved in the salicylic acid signaling pathway were significantly up-regulated in HT compared with HY. This indicates that the effector-triggered immunity response was stronger and that the salicylic acid signaling pathway played a pivotal role in the Psa defense response of HT. In addition, we identified other important genes, involved in phenylpropanoid biosynthesis and Ca2+ internal flow, which were highly expressed in HT. Taken together, these results provide important information to elucidate the defense mechanisms of kiwifruit during Psa infection.

References

  1. Plant Cell. 2007 Mar;19(3):1065-80 [PMID: 17400895]
  2. Curr Opin Plant Biol. 2007 Oct;10(5):466-72 [PMID: 17904410]
  3. Trends Plant Sci. 2011 Apr;16(4):227-33 [PMID: 21227733]
  4. Plant Cell. 2011 Apr;23(4):1639-53 [PMID: 21498677]
  5. Microbes Infect. 2001 Jun;3(7):561-9 [PMID: 11418330]
  6. Dev Cell. 2010 Aug 17;19(2):284-95 [PMID: 20708590]
  7. Annu Rev Phytopathol. 2005;43:205-27 [PMID: 16078883]
  8. FEBS Lett. 2007 May 25;581(12):2237-46 [PMID: 17321525]
  9. J Exp Bot. 2011 Nov;62(15):5607-21 [PMID: 21862479]
  10. Plant J. 2007 Nov;52(4):658-72 [PMID: 17877704]
  11. Curr Opin Plant Biol. 2012 Aug;15(4):367-74 [PMID: 22664220]
  12. Plant J. 1998 Oct;16(2):223-33 [PMID: 9839467]
  13. Plant Physiol. 2003 Jun;132(2):728-31 [PMID: 12805601]
  14. Nature. 2002 Feb 28;415(6875):977-83 [PMID: 11875555]
  15. Nature. 2001 Jun 14;411(6839):848-53 [PMID: 11459068]
  16. Plant Cell. 2011 Jan;23(1):4-15 [PMID: 21278123]
  17. Int J Mol Sci. 2013 Jul 17;14(7):14950-73 [PMID: 23867610]
  18. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  19. Curr Opin Plant Biol. 2001 Oct;4(5):392-400 [PMID: 11597496]
  20. Proc Natl Acad Sci U S A. 2013 May 21;110(21):8744-9 [PMID: 23650383]
  21. Mol Plant Pathol. 2010 Nov;11(6):829-46 [PMID: 21029326]
  22. Plant Physiol. 2006 Jun;141(2):373-8 [PMID: 16760490]
  23. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  24. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6523-8 [PMID: 10339621]
  25. PLoS One. 2012;7(5):e36518 [PMID: 22590555]
  26. Nature. 2012 May 16;486(7402):228-32 [PMID: 22699612]
  27. Curr Opin Plant Biol. 2002 Aug;5(4):325-31 [PMID: 12179966]
  28. Curr Biol. 2007 Oct 23;17(20):1784-90 [PMID: 17919906]
  29. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10763-8 [PMID: 11526204]
  30. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  31. Plant Cell. 2008 Jun;20(6):1678-92 [PMID: 18586869]
  32. Plant J. 2006 Apr;46(1):34-53 [PMID: 16553894]
  33. PLoS One. 2010 Apr 19;5(4):e10224 [PMID: 20419105]
  34. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  35. Plant Cell. 2004 Feb;16(2):319-31 [PMID: 14742872]
  36. Bioinformatics. 2010 Jan 1;26(1):136-8 [PMID: 19855105]
  37. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20131-6 [PMID: 18056646]
  38. Mol Plant. 2015 Apr;8(4):521-39 [PMID: 25744358]
  39. Mol Plant Pathol. 2013 Aug;14(6):623-34 [PMID: 23621321]
  40. Cell Death Differ. 2011 Aug;18(8):1247-56 [PMID: 21475301]
  41. Nat Rev Genet. 2010 Aug;11(8):539-48 [PMID: 20585331]
  42. Stat Appl Genet Mol Biol. 2005;4:Article17 [PMID: 16646834]
  43. Bioinformatics. 2005 Oct 1;21(19):3787-93 [PMID: 15817693]
  44. Curr Opin Plant Biol. 2005 Aug;8(4):397-403 [PMID: 15939662]
  45. Plant Physiol. 2008 Oct;148(2):818-28 [PMID: 18689446]
  46. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  47. Front Plant Sci. 2013 Feb 22;4:24 [PMID: 23437017]
  48. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3584-8 [PMID: 12655062]
  49. Trends Plant Sci. 2010 Feb;15(2):72-80 [PMID: 20006535]
  50. Plant J. 2003 Mar;33(5):887-98 [PMID: 12609030]
  51. Nat Immunol. 2005 Oct;6(10):973-9 [PMID: 16177805]

MeSH Term

Actinidia
Databases, Nucleic Acid
Gene Expression Profiling
Gene Expression Regulation, Plant
Plant Diseases
Pseudomonas syringae
Sequence Analysis, RNA
Transcriptome

Word Cloud

Created with Highcharts 10.0.0HTHYresponsePsakiwifruitdefense12haianalysisexpressedgenesmodulespathwayPseudomonassyringaepvresistantsusceptible24144inoculationlesionsshootstimesignificantlydifferentiallyfivepathwaysrelatedinteraction"enrichedinvolvedsalicylicacidsignalingimportantinfectionKiwifruitbacterialcankerdevastatingdiseasethreateningproductionclarifymechanismactinidiaeobservedphenotypicchangesHuateHongyangvarieties04896hourBrownappearedareaslesionlengthgraduallyincreasedhcontrastfoundpointsFurthermoreRNA-seqshowedpointAccordingweightedgeneco-expressionnetworknotablymappingusingKyotoEncyclopediaGeneGenomesdatabaseperformedMEgreenyellowMEyellowto"plant-pathogen"Endocytosis""Glycineserinethreoninemetabolism""Carbonfixationphotosyntheticorganisms"whereasMEblackmodule"proteinprocessingendoplasmicreticulum""plant-pathogen"Glycolysis/Gluconeogenesis"particularPti1RPS2encodingeffectorreceptorsNPR1TGAPR1up-regulatedcomparedindicateseffector-triggeredimmunitystrongerplayedpivotalroleadditionidentifiedphenylpropanoidbiosynthesisCa2+internalflowhighlyTakentogetherresultsprovideinformationelucidatemechanismsComparativetranscriptomekiwifruitsActinidiaeearly

Similar Articles

Cited By