Toxicological Evaluation of SiO₂ Nanoparticles by Zebrafish Embryo Toxicity Test.

Sandra Vranic, Yasuhito Shimada, Sahoko Ichihara, Masayuki Kimata, Wenting Wu, Toshio Tanaka, Sonja Boland, Lang Tran, Gaku Ichihara
Author Information
  1. Sandra Vranic: Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan. sandra.vranic@manchester.ac.uk.
  2. Yasuhito Shimada: Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8572, Japan. shimada.yasuhito@mie-u.ac.jp. ORCID
  3. Sahoko Ichihara: Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan. saho@jichi.ac.jp. ORCID
  4. Masayuki Kimata: Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu 514-8572, Japan. mk.lucky-seven@ezweb.ne.jp.
  5. Wenting Wu: Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan. wendywu1206@163.com.
  6. Toshio Tanaka: Department of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8572, Japan. tanaka@doc.medic.mie-u.ac.jp.
  7. Sonja Boland: Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, CNRS UMR 8251, Universite Paris Diderot, Sorbonne Paris Cite, 75013 Paris, France. boland@univ-paris-diderot.fr. ORCID
  8. Lang Tran: Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK. lang.tran@iom-world.org.
  9. Gaku Ichihara: Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan. gak@rs.tus.ac.jp.

Abstract

As the use of nanoparticles (NPs) is increasing, the potential toxicity and behavior of NPs in living systems need to be better understood. Our goal was to evaluate the developmental toxicity and bio-distribution of two different sizes of fluorescently-labeled SiO₂ NPs, 25 and 115 nm, with neutral surface charge or with different surface functionalization, rendering them positively or negatively charged, in order to predict the effect of NPs in humans. We performed a zebrafish embryo toxicity test (ZFET) by exposing the embryos to SiO₂ NPs starting from six hours post fertilization (hpf). Survival rate, hatching time, and gross morphological changes were assessed at 12, 24, 36, 48, 60, and 72 hpf. We evaluated the effect of NPs on angiogenesis by counting the number of sub-intestinal vessels between the second and seventh intersegmental vessels and gene expression analysis of vascular endothelial growth factor (VEGF) and VEGF receptors at 72 hpf. SiO₂ NPs did not show any adverse effects on survival rate, hatching time, gross morphology, or physiological angiogenesis. We found that SiO₂ NPs were trapped by the chorion up until to the hatching stage. After chemical removal of the chorion (dechorionation), positively surface-charged SiO₂ NPs (25 nm) significantly reduced the survival rate of the fish compared to the control group. These results indicate that zebrafish chorion acts as a physical barrier against SiO₂ NPs, and removing the chorions in ZFET might be necessary for evaluation of toxicity of NPs.

Keywords

References

  1. Development. 1999 Sep;126(17):3757-67 [PMID: 10433906]
  2. Dev Biol. 2002 Aug 15;248(2):307-18 [PMID: 12167406]
  3. Am J Epidemiol. 2002 Oct 15;156(8):738-46 [PMID: 12370162]
  4. Occup Environ Med. 2003 Apr;60(4):237-43 [PMID: 12660371]
  5. Occup Med (Lond). 2004 Aug;54(5):304-10 [PMID: 15289586]
  6. Toxicol Sci. 2005 Jul;86(1):6-19 [PMID: 15703261]
  7. Part Fibre Toxicol. 2005 Oct 06;2:8 [PMID: 16209704]
  8. Biomaterials. 2007 Jul;28(19):2959-66 [PMID: 17397919]
  9. ACS Nano. 2007 Sep;1(2):133-43 [PMID: 19122772]
  10. Aquat Toxicol. 2010 Oct 15;100(2):218-28 [PMID: 20303188]
  11. Part Fibre Toxicol. 2010 Dec 03;7(1):39 [PMID: 21126379]
  12. Chem Commun (Camb). 2011 Mar 28;47(12):3442-4 [PMID: 21301716]
  13. PLoS One. 2012;7(12):e52549 [PMID: 23300705]
  14. PLoS One. 2013 Sep 18;8(9):e74606 [PMID: 24058598]
  15. Sci Rep. 2014 Jan 22;4:3810 [PMID: 24448416]
  16. Aquat Toxicol. 2014 May;150:189-200 [PMID: 24685623]
  17. Regul Toxicol Pharmacol. 2014 Aug;69(3):496-511 [PMID: 24874798]
  18. Development. 2014 Jul;141(13):2680-90 [PMID: 24903752]
  19. Congenit Anom (Kyoto). 2015 Feb;55(1):1-16 [PMID: 25109898]
  20. Mol Pharm. 2014 Oct 6;11(10):3642-55 [PMID: 25166282]
  21. Environ Health Toxicol. 2014 Dec 10;29:e2014021 [PMID: 25518841]
  22. Int J Mol Sci. 2014 Dec 30;16(1):660-76 [PMID: 25561223]
  23. Theranostics. 2015 Mar 01;5(6):631-42 [PMID: 25825602]
  24. J Nanosci Nanotechnol. 2015 Mar;15(3):2140-7 [PMID: 26413632]
  25. Int J Mol Sci. 2015 Dec 10;16(12):29398-416 [PMID: 26690408]
  26. ACS Nano. 2016 Mar 22;10(3):3042-68 [PMID: 26918485]
  27. Int J Mol Sci. 2016 Apr 16;17(4):576 [PMID: 27092499]
  28. Front Physiol. 2016 Apr 13;7:130 [PMID: 27148069]
  29. Arch Toxicol. 2016 Oct;90(10):2297-314 [PMID: 27342244]
  30. ACS Nano. 2016 Sep 27;10(9):8325-45 [PMID: 27419663]
  31. Aquat Toxicol. 2016 Nov;180:56-70 [PMID: 27658222]
  32. Yakugaku Zasshi. 2017;137(1):73-78 [PMID: 28049898]
  33. Int J Mol Sci. 2017 Mar 09;18(3): [PMID: 28282918]
  34. Int J Occup Med Environ Health. 2017 Mar 30;30(2):213-229 [PMID: 28366952]
  35. Part Fibre Toxicol. 2017 Aug 23;14(1):31 [PMID: 28835236]
  36. Dev Cell. 2017 Sep 25;42(6):567-583 [PMID: 28950100]
  37. Part Fibre Toxicol. 2017 Nov 25;14(1):47 [PMID: 29178961]
  38. Toxicol Ind Health. 2018 Mar;34(3):169-177 [PMID: 29226784]
  39. Int J Mol Sci. 2017 Dec 13;18(12):null [PMID: 29236059]
  40. J Biochem Mol Toxicol. 2018 Jan;32(1):null [PMID: 29283201]
  41. ACS Appl Mater Interfaces. 2018 Apr 18;10(15):12518-12525 [PMID: 29561590]
  42. Front Pharmacol. 2018 Mar 20;9:253 [PMID: 29615914]
  43. Acta Pharm Sin B. 2018 Mar;8(2):165-177 [PMID: 29719777]
  44. Part Fibre Toxicol. 2018 Jul 16;15(1):31 [PMID: 30012173]

Grants

  1. Z9013040, JP17K08590/Japan Society for the Promotion of Science

MeSH Term

Animals
Chorion
Embryo, Nonmammalian
Gene Expression Regulation, Developmental
Nanoparticles
Neovascularization, Physiologic
Protective Agents
Receptors, Vascular Endothelial Growth Factor
Silicon Dioxide
Survival Analysis
Suspensions
Toxicity Tests
Vascular Endothelial Growth Factor A
Zebrafish

Chemicals

Protective Agents
Suspensions
Vascular Endothelial Growth Factor A
Silicon Dioxide
Receptors, Vascular Endothelial Growth Factor

Word Cloud

Created with Highcharts 10.0.0NPsSiO₂toxicitysurfacezebrafishhpfratehatchingchorionnanoparticlesbio-distributiondifferent25nmfunctionalizationpositivelyeffectembryotestZFETtimegross72angiogenesisvesselsVEGFsurvivaldechorionationuseincreasingpotentialbehaviorlivingsystemsneedbetterunderstoodgoalevaluatedevelopmentaltwosizesfluorescently-labeled115neutralchargerenderingnegativelychargedorderpredicthumansperformedexposingembryosstartingsixhourspostfertilizationSurvivalmorphologicalchangesassessed1224364860evaluatedcountingnumbersub-intestinalsecondseventhintersegmentalgeneexpressionanalysisvascularendothelialgrowthfactorreceptorsshowadverseeffectsmorphologyphysiologicalfoundtrappedstagechemicalremovalsurface-chargedsignificantlyreducedfishcomparedcontrolgroupresultsindicateactsphysicalbarrierremovingchorionsmightnecessaryevaluationToxicologicalEvaluationNanoparticlesZebrafishEmbryoToxicityTestacutesilicavascularization

Similar Articles

Cited By