Dynamic Networks that Drive the Process of Irreversible Step-Growth Polymerization.

Verena Schamboeck, Piet D Iedema, Ivan Kryven
Author Information
  1. Verena Schamboeck: University of Amsterdam, Van't Hoff Institute for Molecular Sciences, Amsterdam, 1090 GE, The Netherlands. v.schamboeck@uva.nl. ORCID
  2. Piet D Iedema: University of Amsterdam, Van't Hoff Institute for Molecular Sciences, Amsterdam, 1090 GE, The Netherlands.
  3. Ivan Kryven: University of Amsterdam, Van't Hoff Institute for Molecular Sciences, Amsterdam, 1090 GE, The Netherlands. ORCID

Abstract

Many research fields, reaching from social networks and epidemiology to biology and physics, have experienced great advance from recent developments in random graphs and network theory. In this paper we propose a generic model of step-growth polymerisation as a promising application of the percolation on a directed random graph. This polymerisation process is used to manufacture a broad range of polymeric materials, including: polyesters, polyurethanes, polyamides, and many others. We link features of step-growth polymerisation to the properties of the directed configuration model. In this way, we obtain new analytical expressions describing the polymeric microstructure and compare them to data from experiments and computer simulations. The molecular weight distribution is related to the sizes of connected components, gelation to the emergence of the giant component, and the molecular gyration radii to the Wiener index of these components. A model on this level of generality is instrumental in accelerating the design of new materials and optimizing their properties, as well as it provides a vital link between network science and experimentally observable physics of polymers.

References

  1. Phys Rev Lett. 1995 Apr 3;74(14):2714-2716 [PMID: 10057999]
  2. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 May;61(5 Pt B):5678-82 [PMID: 11031626]
  3. Phys Rev Lett. 2000 Dec 18;85(25):5468-71 [PMID: 11136023]
  4. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):404-9 [PMID: 11149952]
  5. Nature. 2001 Mar 8;410(6825):268-76 [PMID: 11258382]
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jun;63(6 Pt 2):066123 [PMID: 11415189]
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026118 [PMID: 11497662]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 2):026129 [PMID: 15783400]
  9. Nature. 2008 May 8;453(7192):171-3 [PMID: 18464733]
  10. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  11. Phys Rev Lett. 2013 Jan 11;110(2):028701 [PMID: 23383947]
  12. J Phys Chem B. 2014 Mar 27;118(12):3441-50 [PMID: 24579792]
  13. Macromol Rapid Commun. 2015 Jan;36(2):138-50 [PMID: 25475145]
  14. Sci Rep. 2015 Mar 09;5:8855 [PMID: 25748055]
  15. Phys Rev E. 2016 Jul;94(1-1):012315 [PMID: 27575156]
  16. Sci Rep. 2016 Sep 01;6:32356 [PMID: 27581380]
  17. Sci Rep. 2017 May 18;7(1):2128 [PMID: 28522831]
  18. Phys Rev E. 2017 May;95(5-1):052303 [PMID: 28618550]
  19. Phys Rev E. 2017 Nov;96(5-1):052304 [PMID: 29347790]
  20. Soft Matter. 2018 May 2;14(17):3404-3414 [PMID: 29667682]
  21. Macromolecules. 2018 Apr 24;51(8):2872-2886 [PMID: 29910512]
  22. Phys Rev A. 1992 Jun 15;45(12):R8313-R8316 [PMID: 9907010]

Word Cloud

Created with Highcharts 10.0.0modelpolymerisationphysicsrandomnetworkstep-growthdirectedpolymericmaterialslinkpropertiesnewmolecularcomponentsManyresearchfieldsreachingsocialnetworksepidemiologybiologyexperiencedgreatadvancerecentdevelopmentsgraphstheorypaperproposegenericpromisingapplicationpercolationgraphprocessusedmanufacturebroadrangeincluding:polyesterspolyurethanespolyamidesmanyothersfeaturesconfigurationwayobtainanalyticalexpressionsdescribingmicrostructurecomparedataexperimentscomputersimulationsweightdistributionrelatedsizesconnectedgelationemergencegiantcomponentgyrationradiiWienerindexlevelgeneralityinstrumentalacceleratingdesignoptimizingwellprovidesvitalscienceexperimentallyobservablepolymersDynamicNetworksDriveProcessIrreversibleStep-GrowthPolymerization

Similar Articles

Cited By