Striatal morphological and functional alterations induced by prenatal alcohol exposure.

Yao-Ying Ma
Author Information
  1. Yao-Ying Ma: Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, MS A422, Indianapolis, IN 46202, United States. Electronic address: ym9@iu.edu.

Abstract

Prenatal alcohol exposure (PAE) is an insidious yet preventable cause of developmental disability. The prenatal stage is a critical period for brain development with the concurrence of high vulnerability to the acute and prolonged effects of PAE. There is substantial evidence from both human observations and laboratory experiments that PAE is a common risk factor that predisposes to an array of postnatal mental disorders, including emotional, cognitive, and motor deficits. Although it is well accepted that PAE causes substantial morbidity, available treatments are limited. One reason is the lack of sufficient understanding about the neuroalterations induced by PAE, and how these changes contribute to PAE-induced mental disorders. Among a number of brain structures that have been explored extensively in PAE, the striatum has attracted great attention in the last 20 years in the field of PAE neurobiology. Interestingly, in animal models, the striatum has been considered as a pivotal switch of brain dysfunction induced by PAE, such as addiction, anxiety, depression, and neurodegeneration. In this review, we focus on recent advances in the understanding of morphological and functional changes in brain regions related to alterations after PAE, in particular the striatum. Because this region is central for behavior, emotion and cognition, there is an urgent need for more studies to uncover the PAE-induced alterations at the circuit, neuronal, synaptic and molecular levels, which will not only improve our understanding of the neuroplasticity induced by PAE, but also provide novel biological targets to treat PAE-related mental disorders with translational significance.

Keywords

References

  1. Alcohol Clin Exp Res. 2005 Sep;29(9):1685-97 [PMID: 16205369]
  2. Brain Res Dev Brain Res. 2003 Dec 30;147(1-2):47-57 [PMID: 14741750]
  3. Drug Alcohol Depend. 2018 Oct 1;191:343-347 [PMID: 30176547]
  4. Exp Neurol. 2011 Jun;229(2):364-71 [PMID: 21414313]
  5. Alcohol Clin Exp Res. 2002 Nov;26(11):1752-8 [PMID: 12436066]
  6. Neurotoxicol Teratol. 2012 Jan-Feb;34(1):128-35 [PMID: 21871563]
  7. Nat Neurosci. 2016 Jul;19(7):915-25 [PMID: 27239940]
  8. Physiol Behav. 2015 Sep 1;148:100-10 [PMID: 25662024]
  9. Neuropsychopharmacology. 2015 Mar;40(4):893-905 [PMID: 25284318]
  10. Eur J Neurosci. 2015 Jun;41(12):1569-79 [PMID: 25865037]
  11. PLoS One. 2012;7(8):e42443 [PMID: 22916128]
  12. Dev Psychobiol. 2014 Sep;56(6):1167-78 [PMID: 24037591]
  13. Trends Neurosci. 2004 Aug;27(8):468-74 [PMID: 15271494]
  14. Alcohol. 1984 Nov-Dec;1(6):459-64 [PMID: 6543578]
  15. Can Child Adolesc Psychiatr Rev. 2003 Aug;12(3):57-63 [PMID: 19030526]
  16. EXCLI J. 2014 May 15;13:536-47 [PMID: 26417281]
  17. J Neurosci. 2017 Jul 26;37(30):7140-7148 [PMID: 28642282]
  18. Behav Brain Res. 2011 Jan 1;216(1):358-64 [PMID: 20728475]
  19. Psychopharmacology (Berl). 2015 May;232(10):1705-16 [PMID: 25420606]
  20. Behav Brain Res. 2014 Mar 15;261:106-9 [PMID: 24355753]
  21. Behav Brain Res. 2014 Nov 1;274:194-204 [PMID: 25150040]
  22. Brain Res. 1994 Apr 18;643(1-2):245-65 [PMID: 8032920]
  23. Pharmacol Biochem Behav. 1993 Jun;45(2):465-72 [PMID: 8327553]
  24. Alcohol Clin Exp Res. 2011 May;35(5):912-20 [PMID: 21294753]
  25. J Neurochem. 2019 Feb;148(3):348-358 [PMID: 30315655]
  26. Neuroimage. 2002 Dec;17(4):1807-19 [PMID: 12498754]
  27. Alcohol. 2012 Sep;46(6):577-84 [PMID: 22749340]
  28. Alcohol Clin Exp Res. 2016 Jan;40(1):113-21 [PMID: 26727529]
  29. Physiol Rev. 2001 Jan;81(1):299-343 [PMID: 11152760]
  30. Dev Disabil Res Rev. 2009;15(3):176-92 [PMID: 19731384]
  31. Arch Gen Psychiatry. 2006 Sep;63(9):1009-16 [PMID: 16953003]
  32. Neurotoxicol Teratol. 2015 Sep-Oct;51:1-11 [PMID: 26171567]
  33. Exp Biol Med (Maywood). 2005 Jun;230(6):389-93 [PMID: 15956768]
  34. Brain Res Rev. 2010 Sep 24;64(2):283-303 [PMID: 20471420]
  35. Dev Cogn Neurosci. 2015 Feb;11:83-95 [PMID: 25257972]
  36. Curr Neuropharmacol. 2009 Jun;7(2):132-41 [PMID: 19949572]
  37. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3729-33 [PMID: 185626]
  38. Int J Dev Neurosci. 2014 Nov;38:161-8 [PMID: 25192749]
  39. Nat Neurosci. 2015 Jul;18(7):959-61 [PMID: 26030849]
  40. Alcohol Clin Exp Res. 2014 Dec;38(12):2934-43 [PMID: 25581649]
  41. Alcohol Clin Exp Res. 2018 Jun 5;: [PMID: 29870053]
  42. Neurotoxicol Teratol. 2006 Mar-Apr;28(2):238-44 [PMID: 16457985]
  43. Trends Mol Med. 2014 Sep;20(9):487-98 [PMID: 24766768]
  44. Brain Res. 2005 May 3;1042(2):125-32 [PMID: 15854584]
  45. Alcohol Clin Exp Res. 1998 Aug;22(5):979-84 [PMID: 9726266]
  46. Behav Brain Res. 2016 Sep 15;311:70-80 [PMID: 27185739]
  47. Biomed Res Int. 2015;2015:734367 [PMID: 25793205]
  48. Behav Neurosci. 2010 Jun;124(3):362-9 [PMID: 20528080]
  49. Am J Occup Ther. 2007 Mar-Apr;61(2):247-53 [PMID: 17436847]
  50. Behav Brain Res. 2015 Feb 1;278:137-46 [PMID: 25281280]
  51. Nature. 2004 Sep 16;431(7006):350-5 [PMID: 15372042]
  52. Neurotoxicol Teratol. 2005 Jul-Aug;27(4):585-92 [PMID: 16039829]
  53. Neurotoxicol Teratol. 2004 May-Jun;26(3):417-27 [PMID: 15113603]
  54. Neuropeptides. 2017 Apr;62:45-56 [PMID: 27889070]
  55. Neuroscientist. 2011 Jun;17(3):274-87 [PMID: 21383101]
  56. Neuropharmacology. 2012 Mar;62(4):1607-18 [PMID: 22019722]
  57. Nature. 1981 Jun 4;291(5814):415-8 [PMID: 6165892]
  58. Front Pediatr. 2014 Sep 24;2:103 [PMID: 25309888]
  59. Alcohol. 1989 May-Jun;6(3):253-6 [PMID: 2736085]
  60. Ann N Y Acad Sci. 2008 Nov;1144:154-75 [PMID: 19076375]
  61. Neurochem Res. 2013 Mar;38(3):620-31 [PMID: 23283698]

Grants

  1. P50 AA017823/NIAAA NIH HHS
  2. R01 AA025784/NIAAA NIH HHS
  3. R21 NS108128/NINDS NIH HHS

MeSH Term

Alcohol Drinking
Alcoholic Beverages
Animals
Behavior
Cognition
Corpus Striatum
Emotions
Female
Fetal Alcohol Spectrum Disorders
Humans
Maternal-Fetal Exchange
Pregnancy
Prenatal Exposure Delayed Effects

Word Cloud

Created with Highcharts 10.0.0PAEbraininducedalcoholexposurementaldisordersunderstandingstriatumalterationsPrenatalprenatalsubstantialchangesPAE-inducedmorphologicalfunctionalinsidiousyetpreventablecausedevelopmentaldisabilitystagecriticalperioddevelopmentconcurrencehighvulnerabilityacuteprolongedeffectsevidencehumanobservationslaboratoryexperimentscommonriskfactorpredisposesarraypostnatalincludingemotionalcognitivemotordeficitsAlthoughwellacceptedcausesmorbidityavailabletreatmentslimitedOnereasonlacksufficientneuroalterationscontributeAmongnumberstructuresexploredextensivelyattractedgreatattentionlast20yearsfieldneurobiologyInterestinglyanimalmodelsconsideredpivotalswitchdysfunctionaddictionanxietydepressionneurodegenerationreviewfocusrecentadvancesregionsrelatedparticularregioncentralbehavioremotioncognitionurgentneedstudiesuncovercircuitneuronalsynapticmolecularlevelswillimproveneuroplasticityalsoprovidenovelbiologicaltargetstreatPAE-relatedtranslationalsignificanceStriatalAccumbensMedium-sizedspinyneuronsNeuroplasticityStriatum

Similar Articles

Cited By (2)