Toward Prediction of Electrostatic Parameters for Force Fields That Explicitly Treat Electronic Polarization.

Esther Heid, Markus Fleck, Payal Chatterjee, Christian Schröder, Alexander D MacKerell
Author Information
  1. Esther Heid: Department of Computational Biological Chemistry , University of Vienna, Faculty of Chemistry , Währingerstraße 17 , A-1090 Vienna , Austria. ORCID
  2. Markus Fleck: Department of Computational Biological Chemistry , University of Vienna, Faculty of Chemistry , Währingerstraße 17 , A-1090 Vienna , Austria.
  3. Payal Chatterjee: Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 21201 , United States.
  4. Christian Schröder: Department of Computational Biological Chemistry , University of Vienna, Faculty of Chemistry , Währingerstraße 17 , A-1090 Vienna , Austria. ORCID
  5. Alexander D MacKerell: Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 21201 , United States. ORCID

Abstract

The derivation of atomic polarizabilities for polarizable force field development has been a long-standing problem. Atomic polarizabilities were often refined manually starting from tabulated values, rendering an automated assignment of parameters difficult and hampering reproducibility and transferability of the obtained values. To overcome this, we trained both a linear increment scheme and a multilayer perceptron neural network on a large number of high-quality quantum mechanical atomic polarizabilities and partial atomic charges, where only the type of each atom and its connectivity were used as input. The predicted atomic polarizabilities and charges had average errors of 0.023 Å and 0.019 e using the neural net and 0.063 Å and 0.069 e using the simple increment scheme. As the algorithm relies only on the connectivities of the atoms within a molecule, thus omitting dependencies on the three-dimensional conformation, the approach naturally assigns like charges and polarizabilities to symmetrical groups. Accordingly, a convenient utility is presented for generating the partial atomic charges and atomic polarizabilities for organic molecules as needed in polarizable force field development.

References

  1. Nature. 2000 Jun 22;405(6789):947-51 [PMID: 10879535]
  2. Psychol Rev. 1958 Nov;65(6):386-408 [PMID: 13602029]
  3. J Comput Chem. 2004 Jul 15;25(9):1157-74 [PMID: 15116359]
  4. Proc Natl Acad Sci U S A. 2005 May 10;102(19):6665-70 [PMID: 15870211]
  5. Drug Discov Today. 2005 Jul 15;10(14):987-92 [PMID: 16023057]
  6. J Chem Phys. 2006 Jan 14;124(2):024111 [PMID: 16422575]
  7. J Comput Chem. 2006 Apr 30;27(6):781-90 [PMID: 16526038]
  8. J Comput Chem. 2010 Mar;31(4):671-90 [PMID: 19575467]
  9. J Phys Chem B. 2011 Mar 31;115(12):3100-11 [PMID: 21391583]
  10. Phys Chem Chem Phys. 2011 Jul 14;13(26):12240-8 [PMID: 21643580]
  11. Theor Chem Acc. 2012 Feb 26;131(3):1138 [PMID: 22505837]
  12. J Chem Inf Model. 2012 Dec 21;52(12):3155-68 [PMID: 23145473]
  13. J Chem Inf Model. 2012 Dec 21;52(12):3144-54 [PMID: 23146088]
  14. J Comput Chem. 2013 Jul 15;34(19):1661-71 [PMID: 23653432]
  15. J Chem Theory Comput. 2013 Aug 13;9(8): [PMID: 24223528]
  16. J Med Chem. 2014 Jul 24;57(14):5845-59 [PMID: 24471928]
  17. J Comput Aided Mol Des. 2014 Jul;28(7):711-20 [PMID: 24928188]
  18. Biophys J. 2014 Aug 19;107(4):991-7 [PMID: 25140435]
  19. Neural Netw. 2015 Jan;61:85-117 [PMID: 25462637]
  20. J Phys Chem Lett. 2015 Jan 2;6(1):212-6 [PMID: 25580188]
  21. J Phys Chem A. 2015 Feb 26;119(8):1422-34 [PMID: 25648549]
  22. J Phys Chem B. 2015 Mar 26;119(12):4428-40 [PMID: 25751286]
  23. J Chem Theory Comput. 2015 Sep 8;11(9):4473-85 [PMID: 26575937]
  24. J Chem Theory Comput. 2011 May 10;7(5):1404-14 [PMID: 26610132]
  25. J Chem Theory Comput. 2005 Nov;1(6):1128-32 [PMID: 26631656]
  26. Chem Rev. 2016 May 11;116(9):4983-5013 [PMID: 26815602]
  27. J Chem Theory Comput. 2017 Jul 11;13(7):3185-3197 [PMID: 28489372]
  28. Phys Chem Chem Phys. 2018 Feb 14;20(7):5246-5255 [PMID: 29400383]
  29. J Chem Inf Model. 2018 Mar 26;58(3):579-590 [PMID: 29461814]
  30. Phys Chem Chem Phys. 2018 Mar 28;20(13):8554-8563 [PMID: 29542743]
  31. Phys Chem Chem Phys. 2018 Apr 25;20(16):10992-10996 [PMID: 29644363]
  32. J Chem Theory Comput. 2018 Jun 12;14(6):3121-3131 [PMID: 29694035]
  33. Phys Chem Chem Phys. 2018 Jun 6;20(22):15106-15117 [PMID: 29808190]
  34. J Chem Phys. 2018 Jul 28;149(4):044302 [PMID: 30068161]

Grants

  1. R35 GM131710/NIGMS NIH HHS
  2. R01 GM072558/NIGMS NIH HHS
  3. R01 GM070855/NIGMS NIH HHS
  4. R01 GM051501/NIGMS NIH HHS
  5. R29 GM051501/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0atomicpolarizabilitiescharges0polarizableforcefielddevelopmentvaluesincrementschemeneuralpartialÅeusingderivationlong-standingproblemAtomicoftenrefinedmanuallystartingtabulatedrenderingautomatedassignmentparametersdifficulthamperingreproducibilitytransferabilityobtainedovercometrainedlinearmultilayerperceptronnetworklargenumberhigh-qualityquantummechanicaltypeatomconnectivityusedinputpredictedaverageerrors023019net063069simplealgorithmreliesconnectivitiesatomswithinmoleculethusomittingdependenciesthree-dimensionalconformationapproachnaturallyassignslikesymmetricalgroupsAccordinglyconvenientutilitypresentedgeneratingorganicmoleculesneededTowardPredictionElectrostaticParametersForceFieldsExplicitlyTreatElectronicPolarization

Similar Articles

Cited By