Optimal errors and phase transitions in high-dimensional generalized linear models.

Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, Lenka Zdeborová
Author Information
  1. Jean Barbier: Quantitative Life Sciences, International Center for Theoretical Physics, 34151 Trieste, Italy; jbarbier@ictp.it leo.miolane@gmail.com.
  2. Florent Krzakala: Laboratoire de Physique de l'Ecole Normale Supérieure, Université Paris-Sciences-et-Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005 Paris, France.
  3. Nicolas Macris: Communication Theory Laboratory, School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. ORCID
  4. Léo Miolane: Département d'Informatique de l'Ecole Normale Supérieure, Université Paris-Sciences-et-Lettres, Centre National de la Recherche Scientifique, Inria, 75005 Paris, France; jbarbier@ictp.it leo.miolane@gmail.com.
  5. Lenka Zdeborová: Institut de Physique Théorique, Centre National de la Recherche Scientifique et Commissariat à l'Energie Atomique, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.

Abstract

Generalized linear models (GLMs) are used in high-dimensional machine learning, statistics, communications, and signal processing. In this paper we analyze GLMs when the data matrix is random, as relevant in problems such as compressed sensing, error-correcting codes, or benchmark models in neural networks. We evaluate the mutual information (or "free entropy") from which we deduce the Bayes-optimal estimation and generalization errors. Our analysis applies to the high-dimensional limit where both the number of samples and the dimension are large and their ratio is fixed. Nonrigorous predictions for the optimal errors existed for special cases of GLMs, e.g., for the perceptron, in the field of statistical physics based on the so-called replica method. Our present paper rigorously establishes those decades-old conjectures and brings forward their algorithmic interpretation in terms of performance of the generalized approximate message-passing algorithm. Furthermore, we tightly characterize, for many learning problems, regions of parameters for which this algorithm achieves the optimal performance and locate the associated sharp phase transitions separating learnable and nonlearnable regions. We believe that this random version of GLMs can serve as a challenging benchmark for multipurpose algorithms.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5451-5460 [PMID: 30824595]
  2. Phys Rev A. 1990 Jun 15;41(12):7097-7100 [PMID: 9903140]
  3. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 2):066126 [PMID: 12513366]
  5. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18914-9 [PMID: 19858495]
  6. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9446-51 [PMID: 15976026]
  7. Appl Opt. 1982 Aug 1;21(15):2758-69 [PMID: 20396114]
  8. Phys Rev Lett. 1990 Sep 24;65(13):1683-1686 [PMID: 10042332]
  9. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7655-E7662 [PMID: 27856745]
  10. Phys Rev Lett. 2001 Apr 23;86(17):3695-9 [PMID: 11329302]
  11. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14557-62 [PMID: 23954908]
  12. Phys Rev Lett. 1996 Mar 11;76(11):1964-1967 [PMID: 10060565]
  13. Phys Rev A. 1992 Apr 15;45(8):6056-6091 [PMID: 9907706]
  14. Phys Rev Lett. 1991 May 20;66(20):2677-2680 [PMID: 10043583]
  15. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Jun;51(6):6309-6312 [PMID: 9963383]

Word Cloud

Created with Highcharts 10.0.0GLMshigh-dimensionallinearmodelserrorsgeneralizedalgorithmlearningpaperrandomproblemsbenchmarkoptimalperceptronperformanceapproximatemessage-passingregionsphasetransitionsinferenceGeneralizedusedmachinestatisticscommunicationssignalprocessinganalyzedatamatrixrelevantcompressedsensingerror-correctingcodesneuralnetworksevaluatemutualinformation"freeentropy"deduceBayes-optimalestimationgeneralizationanalysisapplieslimitnumbersamplesdimensionlargeratiofixedNonrigorouspredictionsexistedspecialcasesegfieldstatisticalphysicsbasedso-calledreplicamethodpresentrigorouslyestablishesdecades-oldconjecturesbringsforwardalgorithmicinterpretationtermsFurthermoretightlycharacterizemanyparametersachieveslocateassociatedsharpseparatinglearnablenonlearnablebelieveversioncanservechallengingmultipurposealgorithmsOptimalBayesianmodel

Similar Articles

Cited By