Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions.

Andrew J Surman, Marc Rodriguez-Garcia, Yousef M Abul-Haija, Geoffrey J T Cooper, Piotr S Gromski, Rebecca Turk-MacLeod, Margaret Mullin, Cole Mathis, Sara I Walker, Leroy Cronin
Author Information
  1. Andrew J Surman: WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom G12 8QQ.
  2. Marc Rodriguez-Garcia: WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom G12 8QQ.
  3. Yousef M Abul-Haija: WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom G12 8QQ. ORCID
  4. Geoffrey J T Cooper: WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom G12 8QQ.
  5. Piotr S Gromski: WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom G12 8QQ.
  6. Rebecca Turk-MacLeod: WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom G12 8QQ.
  7. Margaret Mullin: School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom G12 8QQ.
  8. Cole Mathis: Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287.
  9. Sara I Walker: Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287. ORCID
  10. Leroy Cronin: WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom G12 8QQ; Lee.Cronin@glasgow.ac.uk. ORCID

Abstract

Many approaches to the origin of life focus on how the molecules found in biology might be made in the absence of biological processes, from the simplest plausible starting materials. Another approach could be to view the emergence of the chemistry of biology as process whereby the environment effectively directs "primordial soups" toward structure, function, and genetic systems over time. This does not require the molecules found in biology today to be made initially, and leads to the hypothesis that environment can direct chemical soups toward order, and eventually living systems. Herein, we show how unconstrained condensation reactions can be steered by changes in the reaction environment, such as order of reactant addition, and addition of salts or minerals. Using omics techniques to survey the resulting chemical ensembles we demonstrate there are distinct, significant, and reproducible differences between the product mixtures. Furthermore, we observe that these differences in composition have consequences, manifested in clearly different structural and functional properties. We demonstrate that simple variations in environmental parameters lead to differentiation of distinct chemical ensembles from both amino acid mixtures and a primordial soup model. We show that the synthetic complexity emerging from such unconstrained reactions is not as intractable as often suggested, when viewed through a chemically agnostic lens. An open approach to complexity can generate compositional, structural, and functional diversity from fixed sets of simple starting materials, suggesting that differentiation of chemical ensembles can occur in the wider environment without the need for biological machinery.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7678-80 [PMID: 10869444]
  2. Nature. 2002 Jul 11;418(6894):214-21 [PMID: 12110897]
  3. Orig Life Evol Biosph. 2003 Apr;33(2):211-8 [PMID: 12967268]
  4. Science. 1953 May 15;117(3046):528-9 [PMID: 13056598]
  5. Science. 1958 Nov 14;128(3333):1214 [PMID: 13592311]
  6. Science. 2004 Jan 9;303(5655):196 [PMID: 14716004]
  7. Chem Biodivers. 2007 Apr;4(4):656-64 [PMID: 17443881]
  8. Orig Life Evol Biosph. 2008 Feb;38(1):57-74 [PMID: 18008180]
  9. Science. 2008 Oct 17;322(5900):404 [PMID: 18927386]
  10. FEMS Microbiol Rev. 2009 Jan;33(1):1-2 [PMID: 19054117]
  11. J Am Chem Soc. 2009 Jan 28;131(3):931-3 [PMID: 19115944]
  12. Nature. 2009 May 14;459(7244):239-42 [PMID: 19444213]
  13. Biochim Biophys Acta. 2010 Jul;1804(7):1405-12 [PMID: 20399286]
  14. Annu Rev Cell Dev Biol. 2010;26:721-44 [PMID: 20604711]
  15. Acc Chem Res. 2012 Dec 18;45(12):2025-34 [PMID: 22455515]
  16. Chem Soc Rev. 2012 Aug 21;41(16):5502-25 [PMID: 22743683]
  17. Chem Rev. 2014 Jan 8;114(1):285-366 [PMID: 24171674]
  18. Science. 2013 Nov 29;342(6162):1098-100 [PMID: 24288333]
  19. Nat Chem. 2014 Apr;6(4):303-9 [PMID: 24651196]
  20. Mol Syst Biol. 2014 Apr 25;10:725 [PMID: 24771084]
  21. Orig Life Evol Biosph. 2014 Feb;44(1):13-28 [PMID: 24917118]
  22. Orig Life Evol Biosph. 2014 Dec;44(4):339-43 [PMID: 25608919]
  23. Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9871-5 [PMID: 26201989]
  24. Orig Life Evol Biosph. 2016 Mar;46(1):19-30 [PMID: 26205652]
  25. Curr Biol. 2015 Oct 5;25(19):R953-63 [PMID: 26439358]
  26. Nat Commun. 2015 Oct 07;6:8385 [PMID: 26442968]
  27. Sci Adv. 2015 Aug 14;1(7):e1500137 [PMID: 26601224]
  28. Orig Life Evol Biosph. 2017 Mar;47(1):13-37 [PMID: 27251366]
  29. Orig Life Evol Biosph. 2017 Jun;47(2):123-143 [PMID: 27473494]
  30. Nature. 2016 Sep 28;537(7622):656-60 [PMID: 27680939]
  31. Nat Nanotechnol. 2016 Nov;11(11):960-967 [PMID: 27694850]
  32. Chem Soc Rev. 2017 May 9;46(9):2543-2554 [PMID: 28418049]
  33. Angew Chem Int Ed Engl. 2017 Jul 3;56(28):8079-8082 [PMID: 28474773]
  34. Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7565-7570 [PMID: 28674005]
  35. Chem Sci. 2016 May 1;7(5):3215-3226 [PMID: 29997813]
  36. J Mol Evol. 1982;19(1):36-46 [PMID: 7161809]
  37. Nature. 1996 May 2;381(6577):59-61 [PMID: 8609988]
  38. Nature. 1996 Aug 8;382(6591):525-8 [PMID: 8700225]

Grants

  1. BB/M011267/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Amino Acids
Chemical Phenomena
Environment
Evolution, Chemical
Minerals
Origin of Life
Salts

Chemicals

Amino Acids
Minerals
Salts

Word Cloud

Created with Highcharts 10.0.0chemicalenvironmentcanensemblesbiologychemistrysystemsunconstrainedreactionsdistinctfunctionaloriginlifemoleculesfoundmadebiologicalstartingmaterialsapproachemergencetowardordershowadditiondemonstratedifferencesmixturesstructuralsimpledifferentiationcomplexityManyapproachesfocusmightabsenceprocessessimplestplausibleAnotherviewprocesswherebyeffectivelydirects"primordialsoups"structurefunctiongenetictimerequiretodayinitiallyleadshypothesisdirectsoupseventuallylivingHereincondensationsteeredchangesreactionreactantsaltsmineralsUsingomicstechniquessurveyresultingsignificantreproducibleproductFurthermoreobservecompositionconsequencesmanifestedclearlydifferentpropertiesvariationsenvironmentalparametersleadaminoacidprimordialsoupmodelsyntheticemergingintractableoftensuggestedviewedchemicallyagnosticlensopengeneratecompositionaldiversityfixedsetssuggestingoccurwiderwithoutneedmachineryEnvironmentalcontrolprogramschemomicscombinatorialpeptides

Similar Articles

Cited By