Small GTPase patterning: How to stabilise cluster coexistence.

Bas Jacobs, Jaap Molenaar, Eva E Deinum
Author Information
  1. Bas Jacobs: Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands.
  2. Jaap Molenaar: Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands. ORCID
  3. Eva E Deinum: Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands. ORCID

Abstract

Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here "polarisation"), whereas others need multiple coexisting clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated after its formation. This raises the question how the same interacting protein components can produce such a rich variety of naturally occurring patterns. Most currently used models for GTPase-based patterning inherently yield polarisation. Such models may at best yield transient coexistence of at most a few clusters, and hence fail to explain several important biological phenomena. These existing models are all based on mass conservation of total GTPase and some form of direct or indirect positive feedback. Here, we show that either of two biologically plausible modifications can yield stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation, or negative feedback by activation of an inhibitor like a GAP. Since we start from two different polarising models our findings seem independent of the precise self-activation mechanism. By studying the net GTPase flows among clusters, we provide insight into how these mechanisms operate. Our coexistence models also allow for dynamical regulation of the final pattern, which we illustrate with examples of pollen tube growth and the branching of fungal hyphae. Together, these results provide a better understanding of how cells can tune a single system to generate a wide variety of biologically relevant patterns.

References

  1. Phys Biol. 2016 Jul 19;13(4):046001 [PMID: 27434017]
  2. Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747): [PMID: 29632261]
  3. J Biol Chem. 1994 Jan 14;269(2):1137-42 [PMID: 8288572]
  4. Mol Biol Cell. 2003 Oct;14(10):4140-54 [PMID: 12937275]
  5. PLoS Comput Biol. 2007 Jun;3(6):e108 [PMID: 17559299]
  6. Bull Math Biol. 2014 Jan;76(1):157-83 [PMID: 24158538]
  7. Kybernetik. 1972 Dec;12(1):30-9 [PMID: 4663624]
  8. Mol Microbiol. 2011 Mar;79(5):1123-7 [PMID: 21338413]
  9. J Cell Sci. 1999 Sep;112 ( Pt 17):2867-74 [PMID: 10444381]
  10. J Biol Chem. 1997 Dec 26;272(52):33175-80 [PMID: 9407105]
  11. Mycologia. 2008 Nov-Dec;100(6):823-32 [PMID: 19202837]
  12. Plant Cell. 2013 Nov;25(11):4439-50 [PMID: 24280391]
  13. Methods Mol Biol. 2018;1821:3-20 [PMID: 30062401]
  14. Cell. 2005 Mar 11;120(5):687-700 [PMID: 15766531]
  15. Cell. 2009 Nov 13;139(4):731-43 [PMID: 19914166]
  16. Genetics. 2008 Aug;179(4):1919-32 [PMID: 18689883]
  17. Trends Cell Biol. 2003 Jan;13(1):13-22 [PMID: 12480336]
  18. Science. 2012 Sep 14;337(6100):1333-6 [PMID: 22984069]
  19. Cell Signal. 1999 Aug;11(8):545-54 [PMID: 10433515]
  20. Interface Focus. 2012 Aug 6;2(4):407-16 [PMID: 23919125]
  21. Trends Cell Biol. 2013 Oct;23(10):476-83 [PMID: 23731999]
  22. Curr Opin Plant Biol. 2015 Dec;28:111-9 [PMID: 26550939]
  23. Mol Biol Cell. 2004 Oct;15(10):4622-32 [PMID: 15282338]
  24. Biophys J. 2008 May 1;94(9):3684-97 [PMID: 18212014]
  25. Biophys J. 2015 Jan 20;108(2):230-6 [PMID: 25606671]
  26. Nature. 2002 Dec 12;420(6916):629-35 [PMID: 12478284]
  27. J Cell Biol. 2008 Jun 30;181(7):1155-68 [PMID: 18591430]
  28. Phys Rev B Condens Matter. 1988 Jun 1;37(16):9638-9649 [PMID: 9944354]
  29. Plant Cell. 2002 Apr;14(4):777-94 [PMID: 11971134]
  30. Curr Biol. 2009 Nov 17;19(21):1827-32 [PMID: 19818614]
  31. Microbiol Mol Biol Rev. 2007 Mar;71(1):48-96 [PMID: 17347519]
  32. Crit Rev Biotechnol. 2017 Mar;37(2):151-162 [PMID: 26669271]
  33. SIAM J Appl Math. 2011;71(4):1401-1427 [PMID: 22171122]
  34. Curr Biol. 2010 Jul 13;20(13):1197-202 [PMID: 20619818]
  35. Nat Rev Mol Cell Biol. 2008 Dec;9(12):981-91 [PMID: 18971947]
  36. PLoS One. 2009 Dec 16;4(12):e8337 [PMID: 20016781]
  37. FEBS Lett. 2008 Apr 30;582(10):1437-43 [PMID: 18381072]
  38. Curr Biol. 2008 Dec 23;18(24):1907-16 [PMID: 19108776]
  39. Dev Biol. 2004 Jan 1;265(1):23-32 [PMID: 14697350]
  40. Curr Opin Plant Biol. 2012 Dec;15(6):601-7 [PMID: 23177207]
  41. Plant Cell. 2002 Apr;14(4):763-76 [PMID: 11971133]
  42. Phys Biol. 2015 Nov 24;12(6):066014 [PMID: 26599916]
  43. PLoS Comput Biol. 2012;8(3):e1002402 [PMID: 22396633]
  44. EMBO Rep. 2004 Jan;5(1):35-40 [PMID: 14710184]
  45. J Cell Sci. 2010 Feb 1;123(Pt 3):340-50 [PMID: 20053639]
  46. Bull Math Biol. 2007 Aug;69(6):1943-78 [PMID: 17457653]
  47. J R Soc Interface. 2018 Mar;15(140): [PMID: 29540540]
  48. Biochem Soc Trans. 2014 Feb;42(1):201-5 [PMID: 24450652]
  49. Plant Cell. 2015 Sep;27(9):2484-500 [PMID: 26296967]
  50. F1000Prime Rep. 2015 Feb 03;7:23 [PMID: 25750741]
  51. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 2):015203 [PMID: 17358214]
  52. PLoS Comput Biol. 2018 Apr 12;14(4):e1006095 [PMID: 29649212]
  53. Proc Natl Acad Sci U S A. 1963 Feb 15;49:187-93 [PMID: 13959737]
  54. Cell. 2012 Apr 13;149(2):322-33 [PMID: 22500799]
  55. PLoS Comput Biol. 2011 Apr;7(4):e1001121 [PMID: 21552548]
  56. Science. 2012 Jul 13;337(6091):239-43 [PMID: 22604726]
  57. J Clin Invest. 2004 Feb;113(4):539-50 [PMID: 14966563]
  58. F1000Res. 2016 Apr 26;5: [PMID: 27158467]

MeSH Term

Animals
Fungal Proteins
Fungi
Models, Molecular
Monomeric GTP-Binding Proteins

Chemicals

Fungal Proteins
Monomeric GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0GTPasemodelsclusterscanyieldcoexistencebiologicalprocesseslocationsformationsingleclusteralsopolarisationpatternvarietypatternsmassconservationfeedbacktwobiologicallyprovideManyoccurspecificcellmembraneoftenspecifiedlocalisedactivitysmallproteinsrequireactivecalledunipolar"polarisation"whereasothersneedmultiplecoexistingMoreoversometimesdynamicallyregulatedraisesquestioninteractingproteincomponentsproducerichnaturallyoccurringcurrentlyusedGTPase-basedpatterninginherentlymaybesttransienthencefailexplainseveralimportantphenomenaexistingbasedtotalformdirectindirectpositiveshoweitherplausiblemodificationsstablecoexistence:includingexplicitturnoveriebreakingnegativeactivationinhibitorlikeGAPSincestartdifferentpolarisingfindingsseemindependentpreciseself-activationmechanismstudyingnetflowsamonginsightmechanismsoperateallowdynamicalregulationfinalillustrateexamplespollentubegrowthbranchingfungalhyphaeTogetherresultsbetterunderstandingcellstunesystemgeneratewiderelevantSmallpatterning:stabilise

Similar Articles

Cited By