Differential Expression of Antimicrobial Peptides in Streptococcus pneumoniae Keratitis and STAT3-Dependent Expression of LL-37 by Streptococcus pneumoniae in Human Corneal Epithelial Cells.

Prerana Sharma, Natalia Sharma, Priyasha Mishra, Joveeta Joseph, Dilip K Mishra, Prashant Garg, Sanhita Roy
Author Information
  1. Prerana Sharma: Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India. preranasharma_22@yahoo.co.in.
  2. Natalia Sharma: Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India. natalia_jmf@yahoo.co.in.
  3. Priyasha Mishra: Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India. priyashakmishra@gmail.com.
  4. Joveeta Joseph: Jhaveri Microbiology Centre, LV Prasad Eye Institute, Hyderabad 500034, India. joveeta@lvpei.org.
  5. Dilip K Mishra: Pathology Department, LV Prasad Eye Institute, Hyderabad 500034, India. dilipkumarmishra@lvpei.org.
  6. Prashant Garg: Tej Kohli Cornea Institute, Hyderabad 500034, India. prashant@lvpei.org.
  7. Sanhita Roy: Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad 500034, India. sanhita@lvpei.org.

Abstract

is the leading cause of bacterial keratitis in the developing world with a growing trend of acquiring resistance against various antibiotics. In the current study, we determined the expression of different antimicrobial peptides (AMPs) in response to in patients, as well as in primary and immortalized human corneal epithelial cells. We further focused on LL-37 and determined its expression in human cornea infected with and studied the killing ability of LL-37 against The expression of AMPs was determined by quantitative PCR and the phosphorylation of signaling proteins was evaluated by immunoblot analysis. LL-37 expression was also determined by immunofluorescence and Western blot method and the killing ability of LL-37 against was determined by colony-forming units. Differential expression of antimicrobial peptides was observed in patients with keratitis. Although induced expression of the AMPs in human corneal epithelial cells (HCEC), it did not induce AMP expression in U937, a human monocyte cell line. also caused activation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB)and mitogen activated protein kinase (MAPK) pathways in corneal epithelial cells. LL-37 was found to be effective against both laboratory and clinical strains of . LL-37 induction by in human corneal epithelial cells was mediated by signal transducer and activator of transcription 3 (STAT3) activation, and inhibition of STAT3 activation significantly reduced LL-37 expression. Our study determines an extensive profile of AMPs expressed in the human cornea during infection, and suggests the potential of LL-37 to be developed as an alternative therapeutic intervention to fight increasing antibiotic resistance among bacteria.

Keywords

References

  1. Ophthalmology. 1999 Jul;106(7):1313-8 [PMID: 10406613]
  2. Curr Infect Dis Rep. 2000 Aug;2(4):327-331 [PMID: 11095873]
  3. Antimicrob Agents Chemother. 2001 May;45(5):1558-60 [PMID: 11302828]
  4. Microbiol Mol Biol Rev. 2001 Jun;65(2):187-207 ; first page, table of contents [PMID: 11381099]
  5. J Invest Dermatol. 2001 Jul;117(1):91-7 [PMID: 11442754]
  6. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  7. Clin Microbiol Rev. 2003 Apr;16(2):230-41 [PMID: 12692096]
  8. Gastroenterology. 2003 Dec;125(6):1613-25 [PMID: 14724813]
  9. Am J Ophthalmol. 1992 Sep 15;114(3):336-8 [PMID: 1524125]
  10. Clin Exp Immunol. 2004 Nov;138(2):195-201 [PMID: 15498026]
  11. Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1379-85 [PMID: 15790905]
  12. Cell Microbiol. 2005 Jul;7(7):1009-17 [PMID: 15953032]
  13. FASEB J. 2005 Jul;19(9):1067-77 [PMID: 15985530]
  14. Curr Eye Res. 2005 May;30(5):385-94 [PMID: 16020269]
  15. Infect Immun. 2005 Oct;73(10):6199-209 [PMID: 16177291]
  16. Microbes Infect. 2006 Feb;8(2):380-9 [PMID: 16242370]
  17. Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2369-80 [PMID: 16723446]
  18. Blood. 2006 Nov 1;108(9):3204-9 [PMID: 16835372]
  19. Chem Biol. 2006 Nov;13(11):1235-42 [PMID: 17114005]
  20. Infect Immun. 2008 Mar;76(3):935-41 [PMID: 18160480]
  21. J Leukoc Biol. 2008 Apr;83(4):991-7 [PMID: 18218857]
  22. J Exp Med. 2008 May 12;205(5):1121-32 [PMID: 18426984]
  23. Infect Immun. 2008 Aug;76(8):3399-404 [PMID: 18490458]
  24. Clin Vaccine Immunol. 2008 Sep;15(9):1450-5 [PMID: 18579695]
  25. J Immunol. 2008 Dec 15;181(12):8504-12 [PMID: 19050268]
  26. Int Arch Allergy Immunol. 2009;150(2):122-32 [PMID: 19439978]
  27. Cell Host Microbe. 2009 Sep 17;6(3):231-43 [PMID: 19748465]
  28. J Glob Infect Dis. 2010 Jan;2(1):10-4 [PMID: 20300412]
  29. J Immunol. 2010 Jun 15;184(12):7108-15 [PMID: 20483738]
  30. Antimicrob Agents Chemother. 2010 Aug;54(8):3516-9 [PMID: 20498319]
  31. Indian J Pathol Microbiol. 2010 Apr-Jun;53(2):281-6 [PMID: 20551533]
  32. Microbes Infect. 2010 Nov;12(12-13):978-89 [PMID: 20601077]
  33. Br J Ophthalmol. 2010 Nov;94(11):1523-7 [PMID: 20679078]
  34. J Immunol. 2010 Oct 1;185(7):4272-83 [PMID: 20826748]
  35. PLoS Pathog. 2010 Oct 28;6(10):e1001067 [PMID: 21060861]
  36. J Biol Chem. 2011 Jul 8;286(27):23753-62 [PMID: 21572044]
  37. J Innate Immun. 2012;4(4):377-86 [PMID: 22516952]
  38. Cornea. 2012 Oct;31(10):1123-7 [PMID: 22868629]
  39. Infect Immun. 2012 Nov;80(11):3930-8 [PMID: 22927052]
  40. PLoS One. 2013;8(1):e54245 [PMID: 23358229]
  41. J Exp Med. 2013 Mar 11;210(3):551-61 [PMID: 23401489]
  42. Am J Ophthalmol. 2013 Jun;155(6):961-970.e2 [PMID: 23601656]
  43. PLoS One. 2013 Jun 04;8(6):e64867 [PMID: 23750216]
  44. PLoS Pathog. 2013;9(7):e1003457 [PMID: 23874197]
  45. Curr Protein Pept Sci. 2013 Sep;14(6):504-14 [PMID: 23968350]
  46. J Biol Chem. 2014 Jan 10;289(2):1174-82 [PMID: 24275652]
  47. Indian J Community Med. 2013 Oct;38(4):198-206 [PMID: 24302819]
  48. Antimicrob Agents Chemother. 2014;58(3):1494-500 [PMID: 24366742]
  49. Inflammation. 2014 Oct;37(5):1468-75 [PMID: 24700312]
  50. Infect Immun. 2014 Jul;82(7):2881-9 [PMID: 24778119]
  51. Lab Invest. 2014 Sep;94(9):991-1002 [PMID: 24955895]
  52. J Immunol. 2015 Feb 15;194(4):1763-75 [PMID: 25609842]
  53. Infect Immun. 1989 Aug;57(8):2324-30 [PMID: 2568343]
  54. Virulence. 2015;6(7):716-21 [PMID: 26125127]
  55. Cell Host Microbe. 2015 Oct 14;18(4):471-7 [PMID: 26468750]
  56. Invest Ophthalmol Vis Sci. 2016 Jan 1;57(1):30-9 [PMID: 26746016]
  57. Br J Ophthalmol. 2017 Feb;101(2):108-113 [PMID: 27130916]
  58. Sci Rep. 2016 Sep 16;6:33274 [PMID: 27633343]
  59. Am J Ther. 2017 May;24(3):e361-e369 [PMID: 28430673]
  60. Chemotherapy. 2017;62(4):256-261 [PMID: 28472788]
  61. Sci Rep. 2017 Jun 22;7(1):4074 [PMID: 28642546]
  62. Pathog Dis. 2018 Feb 1;76(1): [PMID: 29325116]
  63. Invest Ophthalmol Vis Sci. 1995 Mar;36(3):614-21 [PMID: 7534282]
  64. Clin Infect Dis. 1997 Jan;24 Suppl 1:S85-8 [PMID: 8994784]

Grants

  1. SB/YS/LS-180/2013,EMR/2016/001514/Department of Science and Technology, Govt. of India

Word Cloud

Created with Highcharts 10.0.0LL-37expressionhumandeterminedcellsAMPscornealepithelialactivationStreptococcuspneumoniaekeratitisresistancestudyantimicrobialpeptidespatientscorneakillingabilityalsoDifferentialactivatedSTAT3ExpressionleadingcausebacterialdevelopingworldgrowingtrendacquiringvariousantibioticscurrentdifferentresponsewellprimaryimmortalizedfocusedinfectedstudiedquantitativePCRphosphorylationsignalingproteinsevaluatedimmunoblotanalysisimmunofluorescenceWesternblotmethodcolony-formingunitsobservedAlthoughinducedHCECinduceAMPU937monocytecelllinecausednuclearfactorkappa-light-chainenhancerBNF-κBmitogenproteinkinaseMAPKpathwaysfoundeffectivelaboratoryclinicalstrainsinductionmediatedsignaltransduceractivatortranscription3inhibitionsignificantlyreduceddeterminesextensiveprofileexpressedinfectionsuggestspotentialdevelopedalternativetherapeuticinterventionfightincreasingantibioticamongbacteriaAntimicrobialPeptidesKeratitisSTAT3-DependentHumanCornealEpithelialCells

Similar Articles

Cited By