Large-Scale, Quantitative Protein Assays on a High-Throughput DNA Sequencing Chip.

Curtis J Layton, Peter L McMahon, William J Greenleaf
Author Information
  1. Curtis J Layton: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
  2. Peter L McMahon: Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
  3. William J Greenleaf: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan-Zuckerberg Initiative, Palo Alto, CA 94301, USA. Electronic address: wjg@stanford.edu.

Abstract

High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3 × 10 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56 × 10 molecular variants of full-length human O-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.

Keywords

References

  1. Biotechniques. 1994 Apr;16(4):730-5 [PMID: 8024796]
  2. Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3619-3624 [PMID: 28325876]
  3. Appl Biochem Biotechnol. 2013 Oct;171(3):583-9 [PMID: 23807489]
  4. Nat Methods. 2014 Jun;11(6):683-8 [PMID: 24809628]
  5. Chembiochem. 2011 Sep 19;12(14):2217-26 [PMID: 21793150]
  6. Nat Methods. 2013 Dec;10(12):1213-8 [PMID: 24097267]
  7. Nat Biotechnol. 2011 Jun 26;29(7):659-64 [PMID: 21706015]
  8. Science. 2013 Jan 4;339(6115):82-5 [PMID: 23239623]
  9. Cell. 2002 Mar 8;108(5):629-36 [PMID: 11893334]
  10. Nat Biotechnol. 2006 Oct;24(10):1253-4 [PMID: 17013375]
  11. Science. 2009 Oct 9;326(5950):289-93 [PMID: 19815776]
  12. Mol Biosyst. 2006 Jan;2(1):49-57 [PMID: 16880922]
  13. Nat Methods. 2010 Sep;7(9):741-6 [PMID: 20711194]
  14. Mol Cell Proteomics. 2014 Jun;13(6):1585-97 [PMID: 24705123]
  15. Chem Biol. 2008 Feb;15(2):128-36 [PMID: 18291317]
  16. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2806-10 [PMID: 14981246]
  17. Nucleic Acids Res. 2009 Dec;37(22):e151 [PMID: 19843614]
  18. Expert Rev Proteomics. 2011 Feb;8(1):61-79 [PMID: 21329428]
  19. Prog Nucleic Acid Res Mol Biol. 2001;66:41-66 [PMID: 11051761]
  20. Nat Rev Genet. 2009 Oct;10(10):669-80 [PMID: 19736561]
  21. Nat Methods. 2008 Feb;5(2):175-7 [PMID: 18204456]
  22. Nat Biotechnol. 2014 Jun;32(6):562-8 [PMID: 24727714]
  23. Nat Protoc. 2007;2(6):1333-49 [PMID: 17545971]
  24. J Biochem. 2009 May;145(5):693-700 [PMID: 19228777]
  25. J Immunol Methods. 1999 Dec 10;231(1-2):119-35 [PMID: 10648932]
  26. J Chem Theory Comput. 2015 Mar 10;11(3):851-60 [PMID: 26579739]
  27. Biochemistry. 2012 Feb 7;51(5):986-94 [PMID: 22280500]
  28. Nature. 2008 Nov 6;456(7218):53-9 [PMID: 18987734]
  29. Nat Methods. 2012 Jan 30;9(2):145-51 [PMID: 22290186]
  30. Science. 2004 Jul 2;305(5680):86-90 [PMID: 15232106]
  31. Nature. 2014 Nov 27;515(7528):554-7 [PMID: 25252978]
  32. J Biochem Biophys Methods. 2001 Oct 30;49(1-3):455-65 [PMID: 11694294]
  33. Nat Rev Drug Discov. 2006 Apr;5(4):310-20 [PMID: 16582876]
  34. Cell. 2017 Jun 29;170(1):35-47.e13 [PMID: 28666121]
  35. Nat Biotechnol. 2011 May 22;29(6):535-41 [PMID: 21602805]
  36. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15815-20 [PMID: 16236721]
  37. J Immunol Methods. 2004 Jul;290(1-2):51-67 [PMID: 15261571]
  38. Nucleic Acids Res. 2014;42(16):10711-9 [PMID: 25143529]
  39. Science. 2009 Dec 4;326(5958):1412-5 [PMID: 19933110]
  40. Chembiochem. 2016 Sep 2;17(17):1628-35 [PMID: 27385640]
  41. Nat Commun. 2014 Sep 03;5:4785 [PMID: 25183057]
  42. Genomics. 2008 Nov;92(5):255-64 [PMID: 18703132]

Grants

  1. P50 HG007735/NHGRI NIH HHS
  2. R01 GM111990/NIGMS NIH HHS
  3. UM1 HG009436/NHGRI NIH HHS

MeSH Term

Antibodies
Antibody Affinity
Antibody Specificity
Automation, Laboratory
Binding Sites, Antibody
Catalysis
DNA Mutational Analysis
High-Throughput Nucleotide Sequencing
Kinetics
Mutation
O(6)-Methylguanine-DNA Methyltransferase
Oligonucleotide Array Sequence Analysis
Oligopeptides
Protein Array Analysis
Protein Binding
Protein Engineering
Workflow

Chemicals

Antibodies
Oligopeptides
FLAG peptide
O(6)-Methylguanine-DNA Methyltransferase

Word Cloud

Created with Highcharts 10.0.0proteinDNAassayshigh-throughputsequencingfunctiondisplaypeptidesantibody110variantrevealedcooperativityHigh-throughputtechniqueshave enableddiverseapproacheslinkingsequencebiochemicalcontrastsubstantiallimitationstermsthroughputautomationwidespreadavailabilityadaptedIlluminachipimmensediversityribosomallytranslatedproteinscarriedfluorescence-basedfunctionaldirectlyflowcelldemonstratingsinglewidelyavailableplatformcanperformsequencing-by-synthesisquantifiedbindingM2anti-FLAGlibrary3 ×FLAGexploringnon-additiveeffectscombinationsmutationsdiscovering"superFLAG"epitopealsomeasuredenzymaticactivity56 ×molecularvariantsfull-lengthhumanO-alkylguanine-DNAalkyltransferaseSNAP-tagcomprehensivecorpuscatalyticratesaminoacidinteraction networkslinkedpositivestructuralproximityubiquitouspositivelycooperativeinteractionshistidineresiduesLarge-ScaleQuantitativeProteinAssaysHigh-ThroughputSequencingChipSNAPtagcharacterizationin vitrotranslationarrayengineeringevolutionribosomesequencerhackingsuperFLAG

Similar Articles

Cited By