Automatic lesion border selection in dermoscopy images using morphology and color features.

Nabin K Mishra, Ravneet Kaur, Reda Kasmi, Jason R Hagerty, Robert LeAnder, Ronald J Stanley, Randy H Moss, William V Stoecker
Author Information
  1. Nabin K Mishra: Stoecker and Associates, Rolla, Missouri.
  2. Ravneet Kaur: Department of Electrical and Computer Engineering, Southern Illinois University Edwardsville, Edwardsville, Illinois. ORCID
  3. Reda Kasmi: Department of Electrical Engineering, University of Bejaia, Bejaia, Algeria.
  4. Jason R Hagerty: Stoecker and Associates, Rolla, Missouri.
  5. Robert LeAnder: Department of Electrical and Computer Engineering, Southern Illinois University Edwardsville, Edwardsville, Illinois.
  6. Ronald J Stanley: Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri.
  7. Randy H Moss: Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri.
  8. William V Stoecker: Stoecker and Associates, Rolla, Missouri.

Abstract

PURPOSE: We present a classifier for automatically selecting a lesion border for dermoscopy skin lesion images, to aid in computer-aided diagnosis of melanoma. Variation in photographic technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No single algorithm provides an acceptable lesion border to allow further processing of skin lesions.
METHODS: We present a random forests border classifier model to select a lesion border from 12 segmentation algorithm borders, graded on a "good-enough" border basis. Morphology and color features inside and outside the automatic border are used to build the model.
RESULTS: For a random forests classifier applied to an 802-lesion test set, the model predicts a satisfactory border in 96.38% of cases, in comparison to the best single border algorithm, which detects a satisfactory border in 85.91% of cases.
CONCLUSION: The performance of the classifier-based automatic skin lesion finder is found to be better than any single algorithm used in this research.

Keywords

References

  1. Skin Res Technol. 2011 Feb;17(1):35-44 [PMID: 20923454]
  2. Comput Med Imaging Graph. 2011 Mar;35(2):128-36 [PMID: 20800995]
  3. Comput Med Imaging Graph. 2009 Mar;33(2):148-53 [PMID: 19121917]
  4. J Invest Dermatol. 1993 Mar;100(3):356S-362S [PMID: 8440924]
  5. Skin Res Technol. 2013 Feb;19(1):e252-8 [PMID: 22676490]
  6. Arch Dermatol. 2001 Oct;137(10):1361-3 [PMID: 11594863]
  7. Br J Dermatol. 2007 Nov;157(5):926-33 [PMID: 17854361]
  8. Skin Res Technol. 2005 Feb;11(1):17-26 [PMID: 15691255]
  9. Clin Dermatol. 2002 May-Jun;20(3):236-9 [PMID: 12074858]
  10. Comput Methods Programs Biomed. 2011 Dec;104(3):e1-15 [PMID: 20663582]
  11. Eur J Dermatol. 2001 May-Jun;11(3):270-6; quiz 277 [PMID: 11358742]
  12. Nature. 2017 Feb 2;542(7639):115-118 [PMID: 28117445]
  13. CA Cancer J Clin. 2018 Jan;68(1):7-30 [PMID: 29313949]
  14. J Am Acad Dermatol. 2015 Nov;73(5):769-76 [PMID: 26386631]
  15. J Am Acad Dermatol. 2007 Mar;56(3):417-21 [PMID: 17109995]
  16. Comput Med Imaging Graph. 2011 Mar;35(2):105-15 [PMID: 20832992]
  17. Skin Res Technol. 2017 Aug;23(3):416-428 [PMID: 27892649]
  18. Comput Med Imaging Graph. 2011 Mar;35(2):116-20 [PMID: 20970307]
  19. Comput Med Imaging Graph. 2011 Mar;35(2):121-7 [PMID: 20832242]
  20. Melanoma Res. 2006 Apr;16(2):183-90 [PMID: 16567974]
  21. Skin Res Technol. 2016 May;22(2):208-22 [PMID: 26403797]

Grants

  1. R43 CA101639/NCI NIH HHS
  2. R43 CA153927/NCI NIH HHS
  3. R44 CA101639/NCI NIH HHS
  4. SBIR R43 CA153927-01/NIH HHS

MeSH Term

Algorithms
Color
Dermoscopy
Diagnosis, Computer-Assisted
Humans
Image Enhancement
Image Interpretation, Computer-Assisted
Melanoma
Pattern Recognition, Automated
Skin
Skin Neoplasms

Word Cloud

Created with Highcharts 10.0.0borderlesionskinclassifierdermoscopyalgorithmimagessegmentationsinglemodelpresentmelanomalesionsrandomforestscolorfeaturesautomaticusedsatisfactorycasesPURPOSE:automaticallyselectingaidcomputer-aideddiagnosisVariationphotographictechniquemakesdifficultproblemprovidesacceptableallowprocessingMETHODS:select12bordersgraded"good-enough"basisMorphologyinsideoutsidebuildRESULTS:applied802-lesiontestsetpredicts9638%comparisonbestdetects8591%CONCLUSION:performanceclassifier-basedfinderfoundbetterresearchAutomaticselectionusingmorphologyimageanalysiscancer

Similar Articles

Cited By