Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy.

Mian Wei, Lingyan Shi, Yihui Shen, Zhilun Zhao, Asja Guzman, Laura J Kaufman, Lu Wei, Wei Min
Author Information
  1. Mian Wei: Department of Chemistry, Columbia University, New York, NY 10027.
  2. Lingyan Shi: Department of Chemistry, Columbia University, New York, NY 10027. ORCID
  3. Yihui Shen: Department of Chemistry, Columbia University, New York, NY 10027.
  4. Zhilun Zhao: Department of Chemistry, Columbia University, New York, NY 10027.
  5. Asja Guzman: Department of Chemistry, Columbia University, New York, NY 10027.
  6. Laura J Kaufman: Department of Chemistry, Columbia University, New York, NY 10027. ORCID
  7. Lu Wei: Department of Chemistry, Columbia University, New York, NY 10027; lwei@caltech.edu wm2256@columbia.edu.
  8. Wei Min: Department of Chemistry, Columbia University, New York, NY 10027; lwei@caltech.edu wm2256@columbia.edu.

Abstract

Three-dimensional visualization of tissue structures using optical microscopy facilitates the understanding of biological functions. However, optical microscopy is limited in tissue penetration due to severe light scattering. Recently, a series of tissue-clearing techniques have emerged to allow significant depth-extension for fluorescence imaging. Inspired by these advances, we develop a volumetric chemical imaging technique that couples Raman-tailored tissue-clearing with stimulated Raman scattering (SRS) microscopy. Compared with the standard SRS, the clearing-enhanced SRS achieves greater than 10-times depth increase. Based on the extracted spatial distribution of proteins and lipids, our method reveals intricate 3D organizations of tumor spheroids, mouse brain tissues, and tumor xenografts. We further develop volumetric phasor analysis of multispectral SRS images for chemically specific clustering and segmentation in 3D. Moreover, going beyond the conventional label-free paradigm, we demonstrate metabolic volumetric chemical imaging, which allows us to simultaneously map out metabolic activities of protein and lipid synthesis in glioblastoma. Together, these results support volumetric chemical imaging as a valuable tool for elucidating comprehensive 3D structures, compositions, and functions in diverse biological contexts, complementing the prevailing volumetric fluorescence microscopy.

Keywords

References

  1. Science. 2005 Jan 7;307(5706):58-62 [PMID: 15637262]
  2. Nat Rev Neurosci. 2007 Sep;8(9):700-11 [PMID: 17704812]
  3. J Biomed Opt. 2008 Mar-Apr;13(2):021108 [PMID: 18465957]
  4. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  5. Lancet Oncol. 2009 May;10(5):459-66 [PMID: 19269895]
  6. Science. 2009 May 8;324(5928):804-7 [PMID: 19423828]
  7. J Clin Invest. 2009 Jun;119(6):1420-8 [PMID: 19487818]
  8. Acc Chem Res. 2009 Jul 21;42(7):832-41 [PMID: 19530674]
  9. Cold Spring Harb Perspect Biol. 2010 May;2(5):a001875 [PMID: 20452960]
  10. J Bone Miner Res. 2010 Jul;25(7):1468-86 [PMID: 20533309]
  11. Nature. 2010 Dec 9;468(7325):829-33 [PMID: 21102433]
  12. Nature. 2010 Dec 9;468(7325):824-8 [PMID: 21102434]
  13. Science. 2010 Dec 3;330(6009):1368-70 [PMID: 21127249]
  14. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  15. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]
  16. Nat Neurosci. 2011 Aug 30;14(11):1481-8 [PMID: 21878933]
  17. Nat Methods. 2011 Sep 29;8(10):811-9 [PMID: 21959136]
  18. Opt Express. 2012 Aug 13;20(17):18525-36 [PMID: 23038491]
  19. Nat Protoc. 2012 Nov;7(11):1983-95 [PMID: 23060243]
  20. Science. 1990 Apr 6;248(4951):73-6 [PMID: 2321027]
  21. J Phys Chem B. 2013 Apr 25;117(16):4634-40 [PMID: 23256635]
  22. Mol Phys. 2012 Aug;110(15-16):1927-1932 [PMID: 23504195]
  23. Cell. 2013 Mar 28;153(1):139-52 [PMID: 23540695]
  24. Nature. 2013 May 16;497(7449):332-7 [PMID: 23575631]
  25. Nat Neurosci. 2013 Aug;16(8):1154-61 [PMID: 23792946]
  26. Sci Transl Med. 2013 Sep 4;5(201):201ra119 [PMID: 24005159]
  27. CNS Oncol. 2013 May;2(3):289-99 [PMID: 24159371]
  28. Adv Drug Deliv Rev. 2014 Apr;69-70:29-41 [PMID: 24636868]
  29. Anal Chem. 2014 May 6;86(9):4115-9 [PMID: 24684208]
  30. Cell. 2014 Apr 24;157(3):726-39 [PMID: 24746791]
  31. BMC Cancer. 2014 Jun 04;14:401 [PMID: 24893952]
  32. Cell. 2014 Nov 6;159(4):896-910 [PMID: 25417164]
  33. Science. 2015 Jan 30;347(6221):543-8 [PMID: 25592419]
  34. Sci Rep. 2015 Jan 22;5:7930 [PMID: 25608867]
  35. Front Neuroanat. 2015 Feb 24;9:19 [PMID: 25759641]
  36. J Biomed Opt. 2015 May;20(5):56013 [PMID: 26021718]
  37. Light Sci Appl. 2015;4:null [PMID: 26167336]
  38. Neuro Oncol. 2016 Feb;18(2):160-72 [PMID: 26180081]
  39. Cell. 2015 Jul 16;162(2):246-257 [PMID: 26186186]
  40. Sci Rep. 2015 Aug 27;5:13489 [PMID: 26311128]
  41. Nat Neurosci. 2015 Oct;18(10):1518-29 [PMID: 26368944]
  42. Sci Transl Med. 2015 Oct 14;7(309):309ra163 [PMID: 26468325]
  43. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  44. Cell. 2015 Dec 3;163(6):1500-14 [PMID: 26638076]
  45. Annu Rev Cell Dev Biol. 2016 Oct 6;32:713-741 [PMID: 27298088]
  46. Cell Rep. 2016 Jul 26;16(4):1138-1152 [PMID: 27425620]
  47. Acc Chem Res. 2016 Aug 16;49(8):1494-502 [PMID: 27486796]
  48. Nat Methods. 2016 Oct;13(10):859-67 [PMID: 27548807]
  49. Med Res Rev. 2017 Mar;37(2):271-313 [PMID: 27617697]
  50. Biomaterials. 2017 Jan;115:19-29 [PMID: 27880891]
  51. Opt Lett. 2017 Feb 15;42(4):659-662 [PMID: 28198892]
  52. Nat Methods. 2017 Apr;14(4):388-390 [PMID: 28218900]
  53. Cell. 2017 Mar 23;169(1):161-173.e12 [PMID: 28340341]
  54. Nat Methods. 2017 Apr;14(4):349-359 [PMID: 28362436]
  55. Nat Methods. 2017 Mar 31;14(4):374-380 [PMID: 28362438]
  56. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  57. Nat Commun. 2017 Apr 24;8:15117 [PMID: 28436473]
  58. Sci Transl Med. 2017 Apr 26;9(387): [PMID: 28446689]
  59. Cell Rep. 2017 Jul 5;20(1):236-250 [PMID: 28683317]
  60. Front Oncol. 2017 Aug 03;7:162 [PMID: 28824874]
  61. Sci Rep. 2017 Aug 24;7(1):9269 [PMID: 28839164]
  62. Analyst. 2017 Oct 23;142(21):4018-4029 [PMID: 28875184]
  63. Nat Biomed Eng. 2017;1:null [PMID: 28955599]
  64. Nat Methods. 2018 Mar;15(3):194-200 [PMID: 29334378]
  65. J Phys Chem Lett. 2018 Aug 16;9(16):4679-4685 [PMID: 30067370]
  66. Nat Commun. 2018 Aug 6;9(1):2995 [PMID: 30082908]
  67. Chem Sci. 2017 Aug 1;8(8):5606-5615 [PMID: 30155229]
  68. Nat Biomed Eng. 2017 Oct;1(10):796-806 [PMID: 31015588]
  69. Science. 1994 Feb 11;263(5148):802-5 [PMID: 8303295]

Grants

  1. P30 CA013696/NCI NIH HHS
  2. R01 EB020892/NIBIB NIH HHS

MeSH Term

Animals
Brain Neoplasms
Cell Line, Tumor
Cone-Beam Computed Tomography
Female
Glioblastoma
Humans
Mice
Neoplasms, Experimental
Spectrum Analysis, Raman
Spheroids, Cellular

Word Cloud

Created with Highcharts 10.0.0imagingvolumetricmicroscopyscatteringchemicalSRStissuestimulatedRaman3Dmetabolicstructuresopticalbiologicalfunctionstissue-clearingfluorescencedevelopclearing-enhancedtumorThree-dimensionalvisualizationusingfacilitatesunderstandingHoweverlimitedpenetrationdueseverelightRecentlyseriestechniquesemergedallowsignificantdepth-extensionInspiredadvancestechniquecouplesRaman-tailoredComparedstandardachievesgreater10-timesdepthincreaseBasedextractedspatialdistributionproteinslipidsmethodrevealsintricateorganizationsspheroidsmousebraintissuesxenograftsphasoranalysismultispectralimageschemicallyspecificclusteringsegmentationMoreovergoingbeyondconventionallabel-freeparadigmdemonstrateallowsussimultaneouslymapactivitiesproteinlipidsynthesisglioblastomaTogetherresultssupportvaluabletoolelucidatingcomprehensivecompositionsdiversecontextscomplementingprevailingVolumetriccancermetabolismclearing

Similar Articles

Cited By