Simulations of Protein Adsorption on Nanostructured Surfaces.

Berardo M Manzi, Marco Werner, Elena P Ivanova, Russell J Crawford, Vladimir A Baulin
Author Information
  1. Berardo M Manzi: Universitat Rovira i Virgili, Departament d'Enginyeria Quimica, Tarragona, 43007, Spain.
  2. Marco Werner: Universitat Rovira i Virgili, Departament d'Enginyeria Quimica, Tarragona, 43007, Spain.
  3. Elena P Ivanova: RMIT University, School of Science, Melbourne, VIC, 3001, Australia. ORCID
  4. Russell J Crawford: RMIT University, School of Science, Melbourne, VIC, 3001, Australia.
  5. Vladimir A Baulin: Universitat Rovira i Virgili, Departament d'Enginyeria Quimica, Tarragona, 43007, Spain. vladimir.baulin@urv.cat. ORCID

Abstract

Recent technological advances have allowed the development of a new generation of nanostructured materials, such as those displaying both mechano-bactericidal activity and substrata that favor the growth of mammalian cells. Nanomaterials that come into contact with biological media such as blood first interact with proteins, hence understanding the process of adsorption of proteins onto these surfaces is highly important. The Random Sequential Adsorption (RSA) model for protein adsorption on flat surfaces was modified to account for nanostructured surfaces. Phenomena related to the nanofeature geometry have been revealed during the modelling process; e.g., convex geometries can lead to lower steric hindrance between particles, and hence higher degrees of surface coverage per unit area. These properties become more pronounced when a decrease in the size mismatch between the proteins and the surface nanostructures occurs. This model has been used to analyse the adsorption of human serum albumin (HSA) on a nano-structured black silicon (bSi) surface. This allowed the Blocking Function (the rate of adsorption) to be evaluated. The probability of the protein to adsorb as a function of the occupancy was also calculated.

References

  1. Mol Cell Proteomics. 2002 Nov;1(11):845-67 [PMID: 12488461]
  2. Mol Cell Proteomics. 2005 May;4(5):700-9 [PMID: 15753121]
  3. Protein Eng. 1999 Jun;12(6):439-46 [PMID: 10388840]
  4. Opt Lett. 1994 Jun 1;19(11):780-2 [PMID: 19844443]
  5. Small. 2012 Aug 20;8(16):2489-94 [PMID: 22674670]
  6. Bull N Y Acad Med. 1988 May;64(4):352-7 [PMID: 3233429]
  7. Scanning. 2012 Jul-Aug;34(4):257-63 [PMID: 22331659]
  8. Langmuir. 2016 Oct 18;32(41):10744-10751 [PMID: 27718587]
  9. J Biomed Mater Res A. 2015 Mar;103(3):949-58 [PMID: 24853075]
  10. ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22025-31 [PMID: 27494044]
  11. Nature. 1962 Nov 3;196:476-7 [PMID: 13998030]
  12. Trends Biotechnol. 2013 May;31(5):295-304 [PMID: 23434154]
  13. Biomaterials. 2012 Feb;33(5):1201-37 [PMID: 22088888]
  14. Appl Microbiol Biotechnol. 2013 Oct;97(20):9257-62 [PMID: 23250225]
  15. J Phys Chem B. 2010 May 6;114(17):5862-9 [PMID: 20384354]
  16. Science. 2008 Apr 11;320(5873):246-9 [PMID: 18292304]
  17. Nat Commun. 2013;4:2838 [PMID: 24281410]

MeSH Term

Adsorption
Animals
Humans
Nanostructures
Serum Albumin
Silicon
Stereoisomerism
Surface Properties

Chemicals

Serum Albumin
Silicon