Genomic epidemiology of erythromycin-resistant Bordetella pertussis in China.

Zheng Xu, Zengguo Wang, Yang Luan, Yarong Li, Xiaoguai Liu, Xiaokang Peng, Sophie Octavia, Michael Payne, Ruiting Lan
Author Information
  1. Zheng Xu: a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia.
  2. Zengguo Wang: b Xi'an Center for Disease Prevention and Control , Xi'an , People's Republic of China.
  3. Yang Luan: b Xi'an Center for Disease Prevention and Control , Xi'an , People's Republic of China.
  4. Yarong Li: c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China.
  5. Xiaoguai Liu: c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China.
  6. Xiaokang Peng: c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China.
  7. Sophie Octavia: a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia.
  8. Michael Payne: a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia.
  9. Ruiting Lan: a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia.

Abstract

Macrolides such as erythromycin are the empirical treatment of Bordetella pertussis infections. China has experienced an increase in erythromycin-resistant B. pertussis isolates since they were first reported in 2013. Here, we undertook a genomic study on Chinese B. pertussis isolates from 2012 to 2015 to elucidate the origins and phylogenetic relationships of erythromycin-resistant B. pertussis isolates in China. A total of 167 Chinese B. pertussis isolates were used for antibiotic sensitivity testing and multiple locus variable-number tandem repeat (VNTR) analysis (MLVA). All except four isolates were erythromycin-resistant and of the four erythromycin-sensitive isolates, three were non-ptxP1. MLVA types (MT), MT55, MT104 and MT195 were the predominant types. Fifty of those isolates were used for whole genome sequencing and phylogenetic analysis. Genome sequencing and phylogenetic analysis revealed three independent erythromycin-resistant lineages and all resistant isolates carried a mutation in the 23S rRNA gene. A novel fhaB3 allele was found uniquely in Chinese ptxP1 isolates and these Chinese ptxP1-ptxA1-fhaB3 had a 5-fold higher mutation rate than the global ptxP1-ptxA1 B. pertussis population. Our results suggest that the evolution of Chinese B. pertussis is likely to be driven by selection pressure from both vaccination and antibiotics. The emergence of the new non-vaccine fhaB3 allele in Chinese B. pertussis population may be a result of selection from vaccination, whereas the expansion of ptxP1-fhaB3 lineages was most likely to be the result of selection pressure from antibiotics. Further monitoring of B. pertussis in China is required to better understand the evolution of the pathogen.

Keywords

References

  1. Trends Microbiol. 1999 Jan;7(1):29-36 [PMID: 10068995]
  2. Eur J Clin Microbiol Infect Dis. 2000 Mar;19(3):174-81 [PMID: 10795589]
  3. Int J Antimicrob Agents. 2001;18 Suppl 1:S25-8 [PMID: 11574191]
  4. J Clin Microbiol. 2002 Jun;40(6):1994-2001 [PMID: 12037054]
  5. J Clin Microbiol. 2003 Mar;41(3):1167-72 [PMID: 12624047]
  6. Nat Genet. 2003 Sep;35(1):32-40 [PMID: 12910271]
  7. J Med Microbiol. 2004 Aug;53(Pt 8):749-54 [PMID: 15272061]
  8. J Bacteriol. 2004 Aug;186(16):5496-505 [PMID: 15292152]
  9. J Bacteriol. 2006 Apr;188(7):2375-82 [PMID: 16547023]
  10. J Antimicrob Chemother. 2007 Nov;60(5):1178-9 [PMID: 17827145]
  11. J Med Microbiol. 2008 Dec;57(Pt 12):1577-80 [PMID: 19018032]
  12. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  13. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  14. Emerg Infect Dis. 2009 Aug;15(8):1206-13 [PMID: 19751581]
  15. Mol Biol Evol. 2011 Jan;28(1):707-15 [PMID: 20833694]
  16. Emerg Infect Dis. 2010 Nov;16(11):1695-701 [PMID: 21029526]
  17. Antimicrob Agents Chemother. 2012 Feb;56(2):1108-9 [PMID: 22106216]
  18. PLoS One. 2012;7(2):e31985 [PMID: 22348138]
  19. BMC Infect Dis. 2012 Jun 20;12:138 [PMID: 22892100]
  20. Clin Vaccine Immunol. 2012 Oct;19(10):1703-4 [PMID: 22914363]
  21. Antimicrob Agents Chemother. 2013 Oct;57(10):5193-4 [PMID: 23877687]
  22. Vaccine. 2013 Oct 25;31(45):5178-91 [PMID: 23994021]
  23. J Comput Biol. 2013 Oct;20(10):714-37 [PMID: 24093227]
  24. Emerg Infect Dis. 2014 Apr;20(4):626-33 [PMID: 24655754]
  25. MBio. 2014 Apr 22;5(2):e01074 [PMID: 24757216]
  26. Clin Microbiol Infect. 2014 Nov;20(11):O825-30 [PMID: 24816168]
  27. Eur J Clin Microbiol Infect Dis. 2015 Jan;34(1):147-152 [PMID: 25090968]
  28. Nucleic Acids Res. 2015 Jan;43(Database issue):D405-12 [PMID: 25300482]
  29. Jundishapur J Microbiol. 2014 Jun;7(6):e10880 [PMID: 25371806]
  30. Eur J Clin Microbiol Infect Dis. 2015 Apr;34(4):821-30 [PMID: 25527446]
  31. APMIS. 2015 Apr;123(4):361-3 [PMID: 25703275]
  32. Bioinformatics. 2015 Aug 15;31(16):2745-7 [PMID: 25851949]
  33. Clin Infect Dis. 2015 Sep 15;61(6):1028-9 [PMID: 26060284]
  34. J Clin Microbiol. 2015 Nov;53(11):3418-22 [PMID: 26224847]
  35. Sci Rep. 2015 Aug 18;5:12888 [PMID: 26283022]
  36. Clin Respir J. 2017 Jul;11(4):419-429 [PMID: 26365811]
  37. Vaccine. 2015 Nov 17;33(46):6327-31 [PMID: 26409140]
  38. Vaccine. 2015 Nov 17;33(46):6277-81 [PMID: 26432908]
  39. J Infect. 2016 Apr;72(4):468-77 [PMID: 26826518]
  40. Eur J Clin Microbiol Infect Dis. 2016 Jul;35(7):1211-4 [PMID: 27146879]
  41. Vaccine. 2016 Jul 25;34(34):3967-71 [PMID: 27346304]
  42. J Infect. 2017 Feb;74(2):204-207 [PMID: 27914992]
  43. Pediatr Infect Dis J. 2017 Jan;36(1):119-121 [PMID: 27956730]
  44. J Bacteriol. 2017 Mar 28;199(8): [PMID: 28167525]
  45. Pediatr Infect Dis J. 2018 Jun;37(6):e145-e148 [PMID: 29088029]
  46. FEMS Microbiol Ecol. 2018 Apr 1;94(4): [PMID: 29346541]
  47. J Glob Antimicrob Resist. 2018 Sep;14:12-16 [PMID: 29486357]
  48. Virus Evol. 2018 Jun 08;4(1):vey016 [PMID: 29942656]
  49. Genome Res. 2018 Sep;28(9):1395-1404 [PMID: 30049790]
  50. MMWR Morb Mortal Wkly Rep. 1994 Nov 11;43(44):807-10 [PMID: 7968996]
  51. Antimicrob Agents Chemother. 1997 May;41(5):1162-5 [PMID: 9145890]
  52. J Clin Microbiol. 1997 Nov;35(11):2989-91 [PMID: 9350776]

MeSH Term

Anti-Bacterial Agents
Bordetella pertussis
China
Cluster Analysis
DNA, Bacterial
DNA, Ribosomal
Drug Resistance, Bacterial
Drug Utilization
Erythromycin
Genetic Variation
Genotype
Humans
Microbial Sensitivity Tests
Minisatellite Repeats
Molecular Epidemiology
Molecular Typing
Pertussis Vaccine
Phylogeny
Point Mutation
RNA, Ribosomal, 23S
Selection, Genetic
Sequence Analysis, DNA
Whole Genome Sequencing
Whooping Cough

Chemicals

Anti-Bacterial Agents
DNA, Bacterial
DNA, Ribosomal
Pertussis Vaccine
RNA, Ribosomal, 23S
Erythromycin

Word Cloud

Created with Highcharts 10.0.0pertussisisolatesBerythromycin-resistantChineseChinaphylogeneticanalysisselectionBordetellagenomicusedMLVAfourthreetypessequencinglineagesmutationfhaB3allelepopulationevolutionlikelypressurevaccinationantibioticsresultepidemiologyMacrolideserythromycinempiricaltreatmentinfectionsexperiencedincreasesincefirstreported2013undertookstudy20122015elucidateoriginsrelationshipstotal167antibioticsensitivitytestingmultiplelocusvariable-numbertandemrepeatVNTRexcepterythromycin-sensitivenon-ptxP1MTMT55MT104MT195predominantFiftywholegenomeGenomerevealedindependentresistantcarried23SrRNAgenenovelfounduniquelyptxP1ptxP1-ptxA1-fhaB35-foldhigherrateglobalptxP1-ptxA1resultssuggestdrivenemergencenewnon-vaccinemaywhereasexpansionptxP1-fhaB3monitoringrequiredbetterunderstandpathogenGenomic

Similar Articles

Cited By (32)