The optimal size of protocells from simple entropic considerations.

Yoelsy Leyva, Osmel Martin, Noel Perez, José Suarez-Lezcano, Manuel Fundora-Pozo
Author Information
  1. Yoelsy Leyva: Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, Casilla 7-D, Arica, Chile. yoelsy.leyva@academicos.uta.cl. ORCID
  2. Osmel Martin: Laboratorio de Ciencia Planetaria, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Cuba.
  3. Noel Perez: Laboratorio de Ciencia Planetaria, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Cuba.
  4. José Suarez-Lezcano: Escuela de Enfermería, Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE), Esmeraldas, Ecuador.
  5. Manuel Fundora-Pozo: Laboratorio de Ciencia Planetaria, Universidad Central "Marta Abreu" de las Villas, Santa Clara, Cuba.

Abstract

Potential constraints on protocell size are developed from simple entropic considerations. To do that, two new different indexes as measures of their structural and dynamic order were developed and applied to an elemental model of the heterotrophic protocell. According to our results, cell size should be a key factor determining the potential of these primitive systems to evolve and consequently to support life. Our analyses also suggest that the size of the optimal vesicles could be constrained to have radii in the interval [Formula: see text], where the two extreme limits [Formula: see text] and [Formula: see text] represent the states of maximum structural order (largest accumulation of substrate inside the vesicle) and the maximum flux of entropy production, respectively. According to the above criteria, the size of the optimum vesicles falls, approximately, in the same spatial range estimated for biological living cells assuming plausible values for the second-order rate constant involved in the catabolic process. Furthermore, the existence of very small vesicles could be seriously affected by the limited efficiency, far from the theoretical limits, with which these catabolic processes may proceed in a prebiotic system.

Keywords

References

  1. Orig Life Evol Biosph. 2002 Aug;32(4):387-93 [PMID: 12458739]
  2. Comput Biol Chem. 2003 Dec;27(6):541-53 [PMID: 14667782]
  3. Microbiol Mol Biol Rev. 2006 Sep;70(3):660-703 [PMID: 16959965]
  4. Chem Biodivers. 2007 Apr;4(4):665-79 [PMID: 17443882]
  5. Chem Biodivers. 2008 Jan;5(1):1-15 [PMID: 18205130]
  6. Phys Chem Chem Phys. 2009 Mar 28;11(12):1869-92 [PMID: 19279999]
  7. Orig Life Evol Biosph. 2009 Dec;39(6):533-44 [PMID: 19554472]
  8. Orig Life Evol Biosph. 2009 Dec;39(6):545-58 [PMID: 19609711]
  9. Philos Trans R Soc Lond B Biol Sci. 2010 May 12;365(1545):1429-35 [PMID: 20368261]
  10. PLoS Comput Biol. 2010 Aug 05;6(8):null [PMID: 20700491]
  11. Astrobiology. 2010 Dec;10(10):1021-30 [PMID: 21162682]
  12. Biochemistry. 2011 May 31;50(21):4402-10 [PMID: 21506553]
  13. PLoS One. 2012;7(6):e39480 [PMID: 22761803]
  14. Biosystems. 2013 Jan;111(1):1-10 [PMID: 23159919]
  15. BMC Biol. 2012 Dec 14;10:101 [PMID: 23241366]
  16. Theory Biosci. 2014 Mar;133(1):39-45 [PMID: 23674095]
  17. Chem Rev. 2014 Jan 8;114(1):285-366 [PMID: 24171674]
  18. Life (Basel). 2015 Mar 02;5(1):651-75 [PMID: 25738256]
  19. Life (Basel). 2015 Feb 09;5(1):447-58 [PMID: 25809963]
  20. Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14518-21 [PMID: 26483481]
  21. Sci Rep. 2017 Jun 9;7(1):3141 [PMID: 28600550]
  22. Eur Biophys J. 2018 Jul;47(5):515-521 [PMID: 29204891]
  23. Astrobiology. 2018 Apr;18(4):403-411 [PMID: 29672138]

Grants

  1. 4729-16/Dirección de Investigación y Extensión Académica de la Universidad de Tarapacá

MeSH Term

Artificial Cells
Entropy

Word Cloud

Created with Highcharts 10.0.0sizevesicles[Formula:seetext]protocelldevelopedsimpleentropicconsiderationstwostructuralorderAccordingoptimallimitsmaximumproductioncatabolicEntropyPotentialconstraintsnewdifferentindexesmeasuresdynamicappliedelementalmodelheterotrophicresultscellkeyfactordeterminingpotentialprimitivesystemsevolveconsequentlysupportlifeanalysesalsosuggestconstrainedradiiintervalextremerepresentstateslargestaccumulationsubstrateinsidevesiclefluxentropyrespectivelycriteriaoptimumfallsapproximatelyspatialrangeestimatedbiologicallivingcellsassumingplausiblevaluessecond-orderrateconstantinvolvedprocessFurthermoreexistencesmallseriouslyaffectedlimitedefficiencyfartheoreticalprocessesmayproceedprebioticsystemprotocellsPrimitivemembranesProto-metabolismProtocell

Similar Articles

Cited By