The role of ABCA7 in Alzheimer's disease: evidence from genomics, transcriptomics and methylomics.

Arne De Roeck, Christine Van Broeckhoven, Kristel Sleegers
Author Information
  1. Arne De Roeck: Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium.
  2. Christine Van Broeckhoven: Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium.
  3. Kristel Sleegers: Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium. kristel.sleegers@uantwerpen.vib.be. ORCID

Abstract

Genome-wide association studies (GWAS) originally identified ATP-binding cassette, sub-family A, member 7 (ABCA7), as a novel risk gene of Alzheimer's disease (AD). Since then, accumulating evidence from in vitro, in vivo, and human-based studies has corroborated and extended this association, promoting ABCA7 as one of the most important risk genes of both early-onset and late-onset AD, harboring both common and rare risk variants with relatively large effect on AD risk. Within this review, we provide a comprehensive assessment of the literature on ABCA7, with a focus on AD-related human -omics studies (e.g. genomics, transcriptomics, and methylomics). In European and African American populations, indirect ABCA7 GWAS associations are explained by expansion of an ABCA7 variable number tandem repeat (VNTR), and a common premature termination codon (PTC) variant, respectively. Rare ABCA7 PTC variants are strongly enriched in AD patients, and some of these have displayed inheritance patterns resembling autosomal dominant AD. In addition, rare missense variants are more frequent in AD patients than healthy controls, whereas a common ABCA7 missense variant may protect from disease. Methylation at several CpG sites in the ABCA7 locus is significantly associated with AD. Furthermore, ABCA7 contains many different isoforms and ABCA7 splicing has been shown to associate with AD. Besides associations with disease status, these genetic and epigenetic ABCA7 markers also showed significant correlations with AD endophenotypes; in particular amyloid deposition and brain morphology. In conclusion, human-based -omics studies provide converging evidence of (partial) ABCA7 loss as an AD pathomechanism, and future studies should make clear if interventions on ABCA7 expression can serve as a valuable therapeutic target for AD.

Keywords

References

  1. J Alzheimers Dis. 2017;59(2):633-641 [PMID: 28655137]
  2. J Atheroscler Thromb. 2011;18(4):274-81 [PMID: 21173549]
  3. J Alzheimers Dis. 2016 Sep 6;54(2):569-84 [PMID: 27472885]
  4. PLoS One. 2013 Nov 18;8(11):e80839 [PMID: 24260488]
  5. Nat Genet. 2011 May;43(5):436-41 [PMID: 21460841]
  6. Nat Genet. 2013 Dec;45(12):1452-8 [PMID: 24162737]
  7. Neurobiol Aging. 2014 Jun;35(6):1510.e7-18 [PMID: 24439028]
  8. Nat Neurosci. 2014 Sep;17(9):1164-70 [PMID: 25129077]
  9. Mol Cell Neurosci. 2015 Jul;67:37-45 [PMID: 26004081]
  10. J Neurosci. 2016 Mar 30;36(13):3848-59 [PMID: 27030769]
  11. Nat Methods. 2018 Mar;15(3):201-206 [PMID: 29334379]
  12. Neurobiol Aging. 2010 Mar;31(3):357-67 [PMID: 18486992]
  13. PLoS Genet. 2014 Feb 20;10(2):e1004173 [PMID: 24586201]
  14. Dev Biol. 2016 Dec 15;420(2):199-209 [PMID: 27402594]
  15. Hippocampus. 2019 Jun;29(6):527-538 [PMID: 30318785]
  16. Front Neurosci. 2018 Aug 27;12:592 [PMID: 30210277]
  17. J Neurosci. 2014 Sep 3;34(36):11929-47 [PMID: 25186741]
  18. J Neurosci. 2013 Mar 6;33(10):4387-94 [PMID: 23467355]
  19. Oncol Lett. 2018 Nov;16(5):5868-5874 [PMID: 30333865]
  20. Ann Transl Med. 2018 Nov;6(22):437 [PMID: 30596067]
  21. J Alzheimers Dis. 2017;57(2):423-436 [PMID: 28269768]
  22. Sci Rep. 2017 Jan 16;7:40273 [PMID: 28091533]
  23. Nat Genet. 2011 May;43(5):429-35 [PMID: 21460840]
  24. Nat Genet. 2009 Oct;41(10):1088-93 [PMID: 19734902]
  25. J Alzheimers Dis. 2016 Mar 21;52(2):693-703 [PMID: 27003212]
  26. J Biol Chem. 2003 Oct 31;278(44):42906-12 [PMID: 12917409]
  27. Neurology. 2014 Apr 22;82(16):1455-62 [PMID: 24670887]
  28. JAMA Neurol. 2018 Mar 1;75(3):328-341 [PMID: 29340569]
  29. J Alzheimers Dis. 2016 Jun 13;53(3):875-92 [PMID: 27314524]
  30. FEBS Lett. 2006 Feb 13;580(4):1178-82 [PMID: 16376881]
  31. Nat Rev Neurol. 2010 Feb;6(2):67-77 [PMID: 20139996]
  32. Melanoma Res. 2007 Oct;17(5):265-73 [PMID: 17885581]
  33. Hum Genet. 2017 Oct;136(10):1341-1351 [PMID: 28780673]
  34. Mol Psychiatry. 2015 Oct;20(10):1173-8 [PMID: 26033242]
  35. Cell. 1998 Jun 12;93(6):951-60 [PMID: 9635425]
  36. Neurosci Lett. 2017 May 10;649:124-129 [PMID: 28400126]
  37. Biochem Biophys Res Commun. 2000 Jul 5;273(2):532-8 [PMID: 10873640]
  38. J Alzheimers Dis. 2013;36(4):749-57 [PMID: 23669301]
  39. Biochem Biophys Res Commun. 2003 Nov 14;311(2):313-8 [PMID: 14592415]
  40. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  41. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19802-7 [PMID: 24248345]
  42. Biol Psychiatry. 2018 Oct 1;84(7):522-530 [PMID: 29885764]
  43. Neurobiol Aging. 2016 Dec;48:204-211 [PMID: 27718423]
  44. Neuroreport. 2006 Jun 26;17(9):891-6 [PMID: 16738483]
  45. PLoS One. 2012;7(9):e45959 [PMID: 23029339]
  46. Age (Dordr). 2016 Apr;38(2):41 [PMID: 27005436]
  47. Pancreas. 2013 May;42(4):707-16 [PMID: 23462326]
  48. Trends Genet. 2011 Mar;27(3):107-15 [PMID: 21216485]
  49. Neurobiol Aging. 2014 Apr;35(4):802-7 [PMID: 24199960]
  50. Neurol Genet. 2016 May 17;2(3):e79 [PMID: 27231719]
  51. Neurol Genet. 2018 Mar 21;4(2):e224 [PMID: 29577078]
  52. Nature. 2016 Aug 17;536(7616):285-91 [PMID: 27535533]
  53. JAMA Neurol. 2013 Sep 1;70(9):1150-7 [PMID: 23836404]
  54. Lancet Neurol. 2015 Aug;14(8):814-822 [PMID: 26141617]
  55. Nat Genet. 2018 Nov;50(11):1584-1592 [PMID: 30297968]
  56. Nat Rev Neurosci. 2013 Apr;14(4):293-304 [PMID: 23511909]
  57. Nat Genet. 2018 Jan;50(1):151-158 [PMID: 29229983]
  58. Ann Neurol. 2015 Sep;78(3):487-98 [PMID: 26101835]
  59. J Alzheimers Dis. 2019;68(4):1635-1656 [PMID: 30909231]
  60. Cold Spring Harb Perspect Med. 2012 Nov 01;2(11): [PMID: 23002015]
  61. Alzheimer Dis Assoc Disord. 2017 Jul-Sep;31(3):232-238 [PMID: 27849641]
  62. Annu Rev Genomics Hum Genet. 2005;6:123-42 [PMID: 16124856]
  63. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  64. Acta Neuropathol. 2017 Sep;134(3):475-487 [PMID: 28447221]
  65. Alzheimers Dement (Amst). 2016 Dec 19;5:53-66 [PMID: 28054028]
  66. Nat Genet. 2015 May;47(5):445-7 [PMID: 25807283]
  67. Nat Rev Genet. 2014 Nov;15(11):765-76 [PMID: 25223781]
  68. Cell Death Dis. 2017 Mar 23;8(3):e2696 [PMID: 28333144]
  69. Neuron. 2016 Jan 6;89(1):37-53 [PMID: 26687838]
  70. J Biol Chem. 2015 Oct 2;290(40):24152-65 [PMID: 26260791]
  71. JAMA. 2013 Apr 10;309(14):1483-92 [PMID: 23571587]
  72. Alzheimers Res Ther. 2015 Dec 10;7(1):73 [PMID: 26654793]
  73. Brain Sci. 2018 Feb 05;8(2): [PMID: 29401741]
  74. JAMA. 2010 May 12;303(18):1832-40 [PMID: 20460622]
  75. J Cancer. 2017 Oct 9;8(17):3598-3606 [PMID: 29151946]
  76. Neurology. 2012 Jul 17;79(3):221-8 [PMID: 22722634]
  77. Science. 2017 Oct 6;358(6359):64-69 [PMID: 28983044]
  78. J Lipid Res. 2005 Aug;46(8):1703-11 [PMID: 15930518]
  79. Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894 [PMID: 30371827]
  80. J Alzheimers Dis. 2017;57(1):171-181 [PMID: 28222527]
  81. Nat Neurosci. 2014 Sep;17(9):1156-63 [PMID: 25129075]
  82. Ann Clin Transl Neurol. 2017 Dec 19;5(1):41-51 [PMID: 29376091]
  83. Alzheimers Dement. 2016 Jun;12(6):733-48 [PMID: 27016693]
  84. J Mol Neurosci. 2018 Mar;64(3):471-477 [PMID: 29504051]
  85. Neurology. 1999 Apr 22;52(7):1397-403 [PMID: 10227624]
  86. Biochem Soc Trans. 2015 Oct;43(5):920-3 [PMID: 26517904]
  87. Acta Neuropathol. 2018 Jun;135(6):827-837 [PMID: 29589097]
  88. Genome Biol. 2013 Mar 25;14(3):R25 [PMID: 23531360]
  89. JAMA Neurol. 2015 Apr;72(4):414-22 [PMID: 25706306]
  90. Nucleic Acids Res. 2019 Jan 8;47(D1):D766-D773 [PMID: 30357393]
  91. Neurobiol Aging. 2016 Oct;46:235.e1-9 [PMID: 27289440]
  92. PLoS One. 2012;7(11):e50976 [PMID: 23226438]
  93. Alzheimers Dement. 2016 Aug;12(8):862-71 [PMID: 26993346]
  94. Lancet Neurol. 2012 Feb;11(2):170-8 [PMID: 22265212]
  95. Neuropathol Appl Neurobiol. 2018 Aug;44(5):506-521 [PMID: 29181857]
  96. Lancet Neurol. 2016 Apr;15(5):455-532 [PMID: 26987701]
  97. Lancet Neurol. 2016 Jul;15(8):857-868 [PMID: 27302364]
  98. Neurobiol Aging. 2016 Mar;39:82-9 [PMID: 26923404]
  99. Neurology. 2016 Jun 7;86(23):2134-7 [PMID: 27037229]
  100. Cell. 2017 Jun 15;169(7):1228-1239.e10 [PMID: 28602350]
  101. Neurosci Lett. 2013 Nov 27;556:58-62 [PMID: 24141082]
  102. J Biol Chem. 2004 Jan 2;279(1):604-11 [PMID: 14570867]
  103. Front Aging Neurosci. 2014 May 20;6:93 [PMID: 24904407]
  104. Neurol Genet. 2016 Jan 14;2(1):e44 [PMID: 27066581]
  105. Genomics Proteomics Bioinformatics. 2015 Oct;13(5):278-89 [PMID: 26542840]
  106. Bioinformatics. 2015 Nov 1;31(21):3555-7 [PMID: 26139635]
  107. JAMA Neurol. 2015 Jan;72(1):15-24 [PMID: 25365775]
  108. Nat Biotechnol. 2019 Feb;37(2):124-126 [PMID: 30670796]
  109. Neurology. 2016 Jun 7;86(23):2126-33 [PMID: 27037232]
  110. Am J Hum Genet. 2012 Aug 10;91(2):224-37 [PMID: 22863193]
  111. J Lipid Res. 2010 Sep;51(9):2591-9 [PMID: 20495215]
  112. Nat Rev Genet. 2012 May 29;13(7):484-92 [PMID: 22641018]
  113. J Biol Chem. 2005 Feb 4;280(5):3989-95 [PMID: 15550377]
  114. Nat Genet. 2009 Oct;41(10):1094-9 [PMID: 19734903]
  115. Genome Biol. 2019 Nov 14;20(1):239 [PMID: 31727106]
  116. J Lipid Res. 2006 Sep;47(9):1915-27 [PMID: 16788211]
  117. Ann Clin Transl Neurol. 2015 Jun;2(6):636-47 [PMID: 26125039]
  118. J Lipid Res. 2005 Jan;46(1):86-92 [PMID: 15520449]
  119. Ann Neurol. 2017 Jul;82(1):128-132 [PMID: 28556232]
  120. Neurol Genet. 2017 Jan 05;3(1):e126 [PMID: 28097223]
  121. Neurobiol Aging. 2015 Jan;36(1):60-7 [PMID: 25189118]
  122. J Alzheimers Dis. 2018;64(4):1195-1211 [PMID: 30010117]
  123. Neurobiol Aging. 2017 Nov;59:220.e1-220.e9 [PMID: 28789839]

MeSH Term

ATP-Binding Cassette Transporters
Alzheimer Disease
Amyloid
Animals
Atrophy
Brain
Codon, Nonsense
Cognition
CpG Islands
DNA Methylation
Disease Models, Animal
Ethnicity
Female
Genes, Dominant
Genetic Predisposition to Disease
Genomics
Humans
Lipid Metabolism
Male
Mice
Minisatellite Repeats
Mutation, Missense
Polymorphism, Single Nucleotide
Risk
Transcriptome

Chemicals

ABCA7 protein, human
ATP-Binding Cassette Transporters
Abca7 protein, mouse
Amyloid
Codon, Nonsense

Word Cloud

Created with Highcharts 10.0.0ABCA7ADstudiesriskdiseasevariantsevidencecommonassociationGWASATP-bindingcassettesub-familymember7Alzheimer'shuman-basedrareprovide-omicsgenomicstranscriptomicsmethylomicsassociationsnumbertandemrepeatVNTRPTCvariantRarepatientsmissenseGenome-wideoriginallyidentifiednovelgeneSinceaccumulatingvitrovivocorroboratedextendedpromotingoneimportantgenesearly-onsetlate-onsetharboringrelativelylargeeffectWithinreviewcomprehensiveassessmentliteraturefocusAD-relatedhumanegEuropeanAfricanAmericanpopulationsindirectexplainedexpansionvariableprematureterminationcodonrespectivelystronglyenricheddisplayedinheritancepatternsresemblingautosomaldominantadditionfrequenthealthycontrolswhereasmayprotectMethylationseveralCpGsiteslocussignificantlyassociatedFurthermorecontainsmanydifferentisoformssplicingshownassociateBesidesstatusgeneticepigeneticmarkersalsoshowedsignificantcorrelationsendophenotypesparticularamyloiddepositionbrainmorphologyconclusionconvergingpartiallosspathomechanismfuturemakeclearinterventionsexpressioncanservevaluabletherapeutictargetroledisease:Alzheimer’sEndophenotypeLoss-of-functionMeta-analysisVariable

Similar Articles

Cited By