Direct and indirect effects of zinc oxide and titanium dioxide nanoparticles on the decomposition of leaf litter in streams.

Sumaya Al Riyami, Dalal Al Mahrouqi, Raeid M M Abed, Abdulkadir Elshafie, Priyanka Sathe, Michael J Barry
Author Information
  1. Sumaya Al Riyami: Biology Department, Sultan Qaboos University, Muscat, Oman.
  2. Dalal Al Mahrouqi: Biology Department, Sultan Qaboos University, Muscat, Oman.
  3. Raeid M M Abed: Biology Department, Sultan Qaboos University, Muscat, Oman.
  4. Abdulkadir Elshafie: Biology Department, Sultan Qaboos University, Muscat, Oman.
  5. Priyanka Sathe: Department of Marine Biology and Fisheries, Sultan Qaboos University, Muscat, Oman.
  6. Michael J Barry: Biology Department, Sultan Qaboos University, Muscat, Oman. mjbarry@squ.edu.om. ORCID

Abstract

As the production of metallic nanoparticles has grown, it is important to assess their impacts on structural and functional components of ecosystems. We investigated the effects of zinc and titanium nanoparticles on leaf decomposition in freshwater habitats. We hypothesized that nanoparticles would inhibit the growth and activity of microbial communities leading to decreased decomposition rates. We also hypothesized that under natural light, the nanoparticles would produce reactive oxygen species that could potentially accelerate decomposition. In the lab, whole Ficus vasta leaves were placed in containers holding one liter of stream water and exposed to either 0, 1, 10 or 100 mg/L of ZnO or TiO nanoparticles for six weeks (referred to as Exp. 1). We measured leaf mass loss, microbial metabolism, and bacterial density at 2, 4, and 6 weeks. In a second experiment (referred to as Exp. 2), we measured the effects of light and 10 and 100 mg/L ZnO or TiO nanoparticles on leaf mass loss, bacterial density and the bacterial and fungal community diversity over a 2 week period. In Experiment 1, mass loss was significantly reduced at 10 and 100 mg/L after 6 weeks and bacterial density decreased at 100 mg/L. In Experiment 2, there was no effect of ZnO nanoparticles on leaf mass loss, but TiO nanoparticles significantly reduced mass loss in the dark but not in the light. One possible explanation is that release of reactive oxygen species by the TiO nanoparticles in the light may have increased the rate of leaf decomposition. Bacterial and fungal diversity was highest in the dark, but nanoparticles did not reduce overall diversity.

Keywords

References

  1. Toxicol Pathol. 2002 Nov-Dec;30(6):620-50 [PMID: 12512863]
  2. Water Res. 2003 Feb;37(3):533-8 [PMID: 12688687]
  3. Environ Sci Technol. 2006 Jul 15;40(14):4374-81 [PMID: 16903273]
  4. Water Res. 2006 Nov;40(19):3527-32 [PMID: 17011015]
  5. Microb Ecol. 2007 Nov;54(4):598-617 [PMID: 17450395]
  6. Chemosphere. 2008 Apr;71(7):1308-16 [PMID: 18194809]
  7. J Mater Sci Mater Med. 2009 Dec;20 Suppl 1:S235-41 [PMID: 18716714]
  8. Environ Pollut. 2009 May;157(5):1619-25 [PMID: 19185963]
  9. Nanomedicine. 2009 Dec;5(4):382-6 [PMID: 19616127]
  10. Environ Sci Technol. 2009 Sep 1;43(17):6757-63 [PMID: 19764246]
  11. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  12. Environ Sci Technol. 2010 Feb 15;44(4):1260-6 [PMID: 20099802]
  13. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2009 Dec;44(14):1485-95 [PMID: 20183505]
  14. Genome Res. 2011 Mar;21(3):494-504 [PMID: 21212162]
  15. Environ Sci Technol. 2011 Apr 1;45(7):2562-9 [PMID: 21391627]
  16. Langmuir. 2011 May 17;27(10):6059-68 [PMID: 21500814]
  17. ISME J. 2011 Nov;5(11):1701-12 [PMID: 21544102]
  18. Microb Ecol. 2011 Jul;62(1):58-68 [PMID: 21553058]
  19. Ecology. 2011 Jan;92(1):3-10 [PMID: 21560670]
  20. Free Radic Biol Med. 2011 Nov 15;51(10):1872-81 [PMID: 21920432]
  21. Trends Ecol Evol. 2012 Jan;27(1):19-26 [PMID: 21943703]
  22. Mar Environ Res. 2012 May;76:32-40 [PMID: 22391237]
  23. PLoS One. 2012;7(8):e42663 [PMID: 22905159]
  24. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  25. Environ Pollut. 2013 Jan;172:76-85 [PMID: 22995930]
  26. Acc Chem Res. 2013 Mar 19;46(3):813-22 [PMID: 23039211]
  27. Part Fibre Toxicol. 2013 Apr 15;10:15 [PMID: 23587290]
  28. Environ Microbiol Rep. 2013 Jun;5(3):453-63 [PMID: 23754725]
  29. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  30. Environ Toxicol Chem. 2014 Feb;33(2):317-27 [PMID: 24352762]
  31. Toxicol In Vitro. 2014 Sep;28(6):1144-52 [PMID: 24878115]
  32. PLoS One. 2014 Aug 27;9(8):e106280 [PMID: 25162615]
  33. PLoS One. 2014 Dec 16;9(12):e114570 [PMID: 25514025]
  34. Microb Ecol. 2016 Feb;71(2):266-75 [PMID: 26156053]
  35. Environ Toxicol Chem. 2016 Nov;35(11):2834-2844 [PMID: 27110671]
  36. Mikrobiologiia. 2016 Jan-Feb;85(1):56-65 [PMID: 27301129]
  37. Aquat Toxicol. 2016 Aug;177:425-32 [PMID: 27393920]
  38. Trends Ecol Evol. 2017 Apr;32(4):240-248 [PMID: 28190532]
  39. Sci Total Environ. 2017 Oct 15;596-597:465-480 [PMID: 28458222]

Grants

  1. IG/SCI/BIO/2015/02/Sultan Qaboos University

MeSH Term

Bacterial Physiological Phenomena
Biodegradation, Environmental
Dose-Response Relationship, Drug
Ficus
Fungi
Light
Metal Nanoparticles
Microbiota
Plant Leaves
Rivers
Titanium
Zinc Oxide

Chemicals

titanium dioxide
Titanium
Zinc Oxide

Word Cloud

Created with Highcharts 10.0.0nanoparticlesleafdecompositionmasslosslight100 mg/LTiObacterial2effects110ZnOweeksdensitydiversityzinctitaniumhypothesizedmicrobialdecreasedreactiveoxygenspeciesreferredExpmeasured6fungalExperimentsignificantlyreduceddarklitterproductionmetallicgrownimportantassessimpactsstructuralfunctionalcomponentsecosystemsinvestigatedfreshwaterhabitatsinhibitgrowthactivitycommunitiesleadingratesalsonaturalproducepotentiallyacceleratelabwholeFicusvastaleavesplacedcontainersholdingoneliterstreamwaterexposedeither0sixmetabolism4secondexperimentcommunityweekperiodeffectOnepossibleexplanationreleasemayincreasedrateBacterialhighestreduceoverallDirectindirectoxidedioxidestreamsDecompositionEcosystemfunctionLeafNanoparticleTitaniumZinc

Similar Articles

Cited By