Oxaliplatin aggravates hepatic oxidative stress, inflammation and fibrosis in a non‑alcoholic fatty liver disease mouse model.

Yulei Lu, Youzhi Lin, Xiaoqing Huang, Shengming Wu, Jian Wei, Chun Yang
Author Information
  1. Yulei Lu: Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  2. Youzhi Lin: Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  3. Xiaoqing Huang: Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  4. Shengming Wu: Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  5. Jian Wei: Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  6. Chun Yang: Department of Experimental Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.

Abstract

Oxaliplatin (OXA)‑based chemotherapy is widely used in the treatment of gastrointestinal tumors; however, it is associated with chemotherapy‑associated liver injury. Whether OXA induces liver injury and aggravates the already existing hepatic oxidative stress, inflammation and fibrosis in non‑alcoholic fatty liver disease (NAFLD), and whether these effects can be alleviated by reduced glutathione (GSH) treatment, remains unclear. In the present study, OXA induced acute liver injury in NAFLD mice. Moreover, OXA increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased the levels of superoxide dismutase and GSH peroxidase in the livers of NAFLD mice. OXA also induced the upregulation of hepatic inflammatory cytokines, such as tumor necrosis factor (TNF)‑α, interferon (IFN)‑γ and interleukin (IL)‑17, in NAFLD mice. Furthermore, collagen fiber deposition in liver tissues was increased and the expression of transforming growth factor (TGF)‑β, α‑smooth muscle actin (SMA) and tissue inhibitor of metallopeptidase (TIMP)‑1 was upregulated in the livers of OXA‑treated NAFLD mice. Treatment with exogenous GSH alleviated OXA‑induced acute liver injury in NAFLD mice, and significantly reduced the levels of ROS, MDA and TNF‑α. However, GSH treatment did not inhibit collagen fiber deposition, although it reduced the levels of IFN‑γ, IL‑17, TGF‑β, α‑SMA and TIMP‑1 in the livers of OXA‑treated NAFLD mice. In conclusion, OXA chemotherapy may induce acute liver injury and aggravate the existing hepatic oxidative stress, inflammation and fibrosis in NAFLD. Treatment of NAFLD mice with exogenous GSH alleviated OXA‑induced liver injury, possibly by ameliorating OXA‑aggravated hepatic oxidative stress and inflammation; it did not, however, attenuate OXA‑aggravated liver fibrosis.

References

  1. J Cell Sci. 2002 May 1;115(Pt 9):1837-46 [PMID: 11956315]
  2. Hepatology. 2003 Apr;37(4):917-23 [PMID: 12668987]
  3. Cell. 2003 Oct 3;115(1):61-70 [PMID: 14532003]
  4. Ann Oncol. 2004 Mar;15(3):460-6 [PMID: 14998849]
  5. J Gastroenterol Hepatol. 2007 Jun;22 Suppl 1:S73-8 [PMID: 17567473]
  6. Semin Liver Dis. 2008 May;28(2):167-74 [PMID: 18452116]
  7. Mol Aspects Med. 2009 Feb-Apr;30(1-2):29-41 [PMID: 18786561]
  8. Lancet Oncol. 2009 Mar;10(3):278-86 [PMID: 19261256]
  9. Gastroenterology. 2010 Jun;138(7):2509-18, 2518.e1 [PMID: 20230822]
  10. Clin Chim Acta. 2011 Jul 15;412(15-16):1297-305 [PMID: 21514287]
  11. Toxicology. 2012 Mar 11;293(1-3):107-114 [PMID: 22285467]
  12. J Gastroenterol Hepatol. 2012 Mar;27 Suppl 2:89-93 [PMID: 22320924]
  13. Mol Immunol. 2012 Oct;52(3-4):229-36 [PMID: 22750070]
  14. PLoS One. 2013;8(1):e55407 [PMID: 23383181]
  15. J Hepatol. 2013 Aug;59(2):318-26 [PMID: 23624001]
  16. J Immunol. 2013 Aug 15;191(4):1835-44 [PMID: 23842754]
  17. Food Chem Toxicol. 2013 Oct;60:38-44 [PMID: 23856494]
  18. Antioxid Redox Signal. 2014 Mar 1;20(7):1126-67 [PMID: 23991888]
  19. Clin Gastroenterol Hepatol. 2015 Feb;13(2):369-376.e3 [PMID: 25111234]
  20. Antioxid Redox Signal. 2015 Apr 1;22(10):848-70 [PMID: 25602171]
  21. Curr Alzheimer Res. 2015;12(4):298-313 [PMID: 25731620]
  22. Eur J Surg Oncol. 2017 Sep;43(9):1668-1681 [PMID: 28599872]
  23. Met Ions Life Sci. 2018 Feb 5;18: [PMID: 29394020]
  24. World J Hepatol. 2018 Jan 27;10(1):1-7 [PMID: 29399273]
  25. Oncol Lett. 2018 Feb;15(2):2266-2272 [PMID: 29403564]
  26. Liver Int. 2018 Feb;38 Suppl 1:56-63 [PMID: 29427492]
  27. Int J Cancer. 2018 Nov 15;143(10):2342-2350 [PMID: 29873066]
  28. Oxid Med Cell Longev. 2018 Jun 11;2018:9547613 [PMID: 29991976]
  29. Pharmacol Res. 2018 Aug;134:289-298 [PMID: 30021122]
  30. Int J Mol Med. 2018 Oct;42(4):2020-2030 [PMID: 30066834]
  31. Horm Mol Biol Clin Investig. 2018 Aug 11;:null [PMID: 30098284]
  32. Front Oncol. 2018 Sep 10;8:357 [PMID: 30250825]
  33. Cell Biol Toxicol. 1997 Mar;13(3):167-73 [PMID: 9088626]

MeSH Term

Animals
Antineoplastic Agents
Chemical and Drug Induced Liver Injury
Disease Models, Animal
Glutathione
Inflammation
Liver
Liver Cirrhosis
Mice
Mice, Inbred BALB C
Non-alcoholic Fatty Liver Disease
Oxaliplatin
Oxidative Stress

Chemicals

Antineoplastic Agents
Oxaliplatin
Glutathione

Word Cloud

Created with Highcharts 10.0.0liverNAFLDmiceOXAinjuryhepaticGSHoxidativestressinflammationfibrosislevelstreatmentalleviatedreducedacuteliversOxaliplatinchemotherapyhoweveraggravatesexistingnon‑alcoholicfattydiseaseinducedincreasedROSMDAfactorcollagenfiberdepositionOXA‑treatedTreatmentexogenousOXA‑inducedOXA‑aggravated‑basedwidelyusedgastrointestinaltumorsassociatedchemotherapy‑associatedWhetherinducesalreadywhethereffectscanglutathioneremainsunclearpresentstudyMoreoverreactiveoxygenspeciesmalondialdehydedecreasedsuperoxidedismutaseperoxidasealsoupregulationinflammatorycytokinestumornecrosisTNF‑αinterferonIFN‑γinterleukinIL‑17FurthermoretissuesexpressiontransforminggrowthTGF‑βα‑smoothmuscleactinSMAtissueinhibitormetallopeptidaseTIMP‑1upregulatedsignificantlyTNF‑αHoweverinhibitalthoughIFN‑γIL‑17TGF‑βα‑SMATIMP‑1conclusionmayinduceaggravatepossiblyamelioratingattenuatemousemodel

Similar Articles

Cited By