Firing rate models for gamma oscillations.

Stephen Keeley, Áine Byrne, André Fenton, John Rinzel
Author Information
  1. Stephen Keeley: Center for Neural Science, New York University , New York, New York.
  2. Áine Byrne: Center for Neural Science, New York University , New York, New York.
  3. André Fenton: Center for Neural Science, New York University , New York, New York.
  4. John Rinzel: Center for Neural Science, New York University , New York, New York.

Abstract

Gamma oscillations are readily observed in a variety of brain regions during both waking and sleeping states. Computational models of gamma oscillations typically involve simulations of large networks of synaptically coupled spiking units. These networks can exhibit strongly synchronized gamma behavior, whereby neurons fire in near synchrony on every cycle, or weakly modulated gamma behavior, corresponding to stochastic, sparse firing of the individual units on each cycle of the population gamma rhythm. These spiking models offer valuable biophysical descriptions of gamma oscillations; however, because they involve many individual neuronal units they are limited in their ability to communicate general network-level dynamics. Here we demonstrate that few-variable firing rate models with established synaptic timescales can account for both strongly synchronized and weakly modulated gamma oscillations. These models go beyond the classical formulations of rate models by including at least two dynamic variables per population: firing rate and synaptic activation. The models' flexibility to capture the broad range of gamma behavior depends directly on the timescales that represent recruitment of the excitatory and inhibitory firing rates. In particular, we find that weakly modulated gamma oscillations occur robustly when the recruitment timescale of inhibition is faster than that of excitation. We present our findings by using an extended Wilson-Cowan model and a rate model derived from a network of quadratic integrate-and-fire neurons. These biophysical rate models capture the range of weakly modulated and coherent gamma oscillations observed in spiking network models, while additionally allowing for greater tractability and systems analysis. Here we develop simple and tractable models of gamma oscillations, a dynamic feature observed throughout much of the brain with significant correlates to behavior and cognitive performance in a variety of experimental contexts. Our models depend on only a few dynamic variables per population, but despite this they qualitatively capture features observed in previous biophysical models of gamma oscillations that involve many individual spiking units.

Keywords

References

  1. Science. 2005 Apr 1;308(5718):111-3 [PMID: 15802603]
  2. J Neurosci. 1996 Oct 15;16(20):6402-13 [PMID: 8815919]
  3. J Comput Neurosci. 1994 Dec;1(4):313-21 [PMID: 8792237]
  4. J Neurophysiol. 2003 Jul;90(1):415-30 [PMID: 12611969]
  5. J Comput Neurosci. 2017 Oct;43(2):143-158 [PMID: 28748303]
  6. Biol Cybern. 1995 Sep;73(4):357-66 [PMID: 7578475]
  7. Biophys J. 1972 Jan;12(1):1-24 [PMID: 4332108]
  8. Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9363-8 [PMID: 27482084]
  9. Cereb Cortex. 2016 Feb;26(2):797-806 [PMID: 25778344]
  10. Nature. 2009 Nov 19;462(7271):353-7 [PMID: 19924214]
  11. J Neurosci. 2015 Nov 25;35(47):15682-95 [PMID: 26609160]
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031909 [PMID: 19391973]
  13. Neuron. 2014 May 7;82(3):670-81 [PMID: 24746420]
  14. Proc Natl Acad Sci U S A. 2005 May 10;102(19):7002-7 [PMID: 15870189]
  15. Physiol Rev. 2010 Jul;90(3):1195-268 [PMID: 20664082]
  16. Nat Rev Neurosci. 2007 Jan;8(1):45-56 [PMID: 17180162]
  17. Neural Comput. 2000 Jan;12(1):43-89 [PMID: 10636933]
  18. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3561-6 [PMID: 19204281]
  19. PLoS One. 2011 May 06;6(5):e14804 [PMID: 21573105]
  20. PLoS Biol. 2018 Jan 18;16(1):e2003354 [PMID: 29346381]
  21. J Neurosci. 2007 Aug 1;27(31):8184-9 [PMID: 17670965]
  22. PLoS Comput Biol. 2008 Aug 29;4(8):e1000092 [PMID: 18769680]
  23. Nat Neurosci. 2008 Jul;11(7):749-51 [PMID: 18552841]
  24. J Neurophysiol. 1999 Sep;82(3):1295-302 [PMID: 10482748]
  25. Chaos. 2017 Mar;27(3):033102 [PMID: 28364765]
  26. J Neurosci. 1995 Jan;15(1 Pt 1):47-60 [PMID: 7823151]
  27. J Neurosci. 2007 Feb 21;27(8):2058-73 [PMID: 17314301]
  28. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1698-702 [PMID: 2922407]
  29. Neural Comput. 2003 Jan;15(1):1-56 [PMID: 12590818]
  30. J Neurosci. 2001 Apr 15;21(8):2687-98 [PMID: 11306622]
  31. J Neurosci. 2001 Dec 1;21(23):9478-86 [PMID: 11717382]
  32. Int J Psychophysiol. 2000 Dec 1;38(3):315-36 [PMID: 11102670]
  33. Front Comput Neurosci. 2011 May 25;5:25 [PMID: 21647353]
  34. Neural Comput. 2006 May;18(5):1066-110 [PMID: 16595058]
  35. Neural Comput. 2013 Dec;25(12):3207-34 [PMID: 24047318]
  36. Trends Neurosci. 2003 Dec;26(12):676-82 [PMID: 14624852]
  37. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7645-50 [PMID: 10852953]
  38. Chaos. 2008 Mar;18(1):015113 [PMID: 18377094]
  39. Neural Comput. 2003 Mar;15(3):509-38 [PMID: 12620157]
  40. Cereb Cortex. 2005 Sep;15(9):1424-37 [PMID: 15659657]
  41. Annu Rev Neurosci. 2012;35:203-25 [PMID: 22443509]
  42. Electroencephalogr Clin Neurophysiol. 1978 May;44(5):586-605 [PMID: 77765]
  43. Annu Rev Neurosci. 2009;32:209-24 [PMID: 19400723]
  44. Neural Comput. 1999 Oct 1;11(7):1621-71 [PMID: 10490941]
  45. J Neurophysiol. 2017 Mar 1;117(3):950-965 [PMID: 27927782]
  46. Annu Rev Neurosci. 2004;27:247-78 [PMID: 15217333]
  47. Nat Neurosci. 2008 Jul;11(7):823-33 [PMID: 18516033]
  48. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):010901 [PMID: 25122239]
  49. J Comput Neurosci. 2000 May-Jun;8(3):183-208 [PMID: 10809012]
  50. Neuron. 2009 Sep 24;63(6):727-32 [PMID: 19778503]
  51. Phys Rev E. 2019 Jan;99(1-1):012313 [PMID: 30780315]
  52. Nature. 2009 Jun 4;459(7247):698-702 [PMID: 19396159]
  53. J Math Neurosci. 2016 Dec;6(1):2 [PMID: 26739133]

Grants

  1. F32 MH115445/NIMH NIH HHS
  2. R01 NS105472/NINDS NIH HHS

MeSH Term

Animals
Brain
Gamma Rhythm
Humans
Models, Neurological
Neurons
Synaptic Potentials

Word Cloud

Created with Highcharts 10.0.0gammamodelsoscillationsrateobservedspikingunitsbehaviorweaklymodulatedfiringmodelinvolveindividualbiophysicaldynamiccapturevarietybrainnetworkscanstronglysynchronizedneuronscyclepopulationmanysynaptictimescalesvariablesperrangerecruitmentWilson-CowannetworkGammareadilyregionswakingsleepingstatesComputationaltypicallysimulationslargesynapticallycoupledexhibitwherebyfirenearsynchronyeverycorrespondingstochasticsparserhythmoffervaluabledescriptionshoweverneuronallimitedabilitycommunicategeneralnetwork-leveldynamicsdemonstratefew-variableestablishedaccountgobeyondclassicalformulationsincludingleasttwopopulation:activationmodels'flexibilitybroaddependsdirectlyrepresentexcitatoryinhibitoryratesparticularfindoccurrobustlytimescaleinhibitionfasterexcitationpresentfindingsusingextendedderivedquadraticintegrate-and-firecoherentadditionallyallowinggreatertractabilitysystemsanalysisdevelopsimpletractablefeaturethroughoutmuchsignificantcorrelatescognitiveperformanceexperimentalcontextsdependdespitequalitativelyfeaturespreviousFiring

Similar Articles

Cited By