Adhesion Stabilized en Masse Intracellular Electrical Recordings from Multicellular Assemblies.

Oskar Staufer, Sebastian Weber, C Peter Bengtson, Hilmar Bading, Amin Rustom, Joachim P Spatz
Author Information
  1. Oskar Staufer: Department for Cellular Biophysics , Max Planck Institute for Medical Research , Jahnstraße 29 , 69120 Heidelberg , Germany.
  2. Sebastian Weber: Department for Cellular Biophysics , Max Planck Institute for Medical Research , Jahnstraße 29 , 69120 Heidelberg , Germany.
  3. C Peter Bengtson: Department of Neurobiology , Interdisciplinary Center for Neurosciences , Im Neuenheimer Feld 366 , 69120 Heidelberg , Germany.
  4. Hilmar Bading: Department of Neurobiology , Interdisciplinary Center for Neurosciences , Im Neuenheimer Feld 366 , 69120 Heidelberg , Germany.
  5. Amin Rustom: Department of Neurobiology , Interdisciplinary Center for Neurosciences , Im Neuenheimer Feld 366 , 69120 Heidelberg , Germany.
  6. Joachim P Spatz: Department for Cellular Biophysics , Max Planck Institute for Medical Research , Jahnstraße 29 , 69120 Heidelberg , Germany. ORCID

Abstract

Coordinated collective electrochemical signals in multicellular assemblies, such as ion fluxes, membrane potentials, electrical gradients, and steady electric fields, play an important role in cell and tissue spatial organization during many physiological processes like wound healing, inflammatory responses, and hormone release. This mass of electric actions cumulates in an en masse activity within cell collectives which cannot be deduced from considerations at the individual cell level. However, continuously sampling en masse collective electrochemical actions of the global electrochemical activity of large-scale electrically coupled cellular assemblies with intracellular resolution over long time periods has been impeded by a lack of appropriate recording techniques. Here we present a bioelectrical interface consisting of low impedance vertical gold nanoelectrode interfaces able to penetrate the cellular membrane in the course of cellular adhesion, thereby allowing en masse recordings of intracellular electrochemical potentials that transverse electrically coupled NRK fibroblast, C2C12 myotube assemblies, and SH-SY5Y neuronal networks of more than 200,000 cells. We found that the intracellular electrical access of the nanoelectrodes correlates with substrate adhesion dynamics and that penetration, stabilization, and sealing of the electrode-cell interface involves recruitment of surrounding focal adhesion complexes and the anchoring of actin bundles, which form a caulking at the electrode base. Intracellular recordings were stable for several days, and monitoring of both basal activity as well as pharmacologically altered electric signals with high signal-to-noise ratios and excellent electrode coupling was performed.

Keywords

References

  1. ACS Appl Mater Interfaces. 2009 Jan;1(1):30-4 [PMID: 20355748]
  2. Biochim Biophys Acta. 2016 Nov;1858(11):2795-2803 [PMID: 27535877]
  3. Cell Calcium. 2008 Nov;44(5):429-40 [PMID: 18359515]
  4. PLoS One. 2013;8(1):e53307 [PMID: 23326412]
  5. Nat Nanotechnol. 2012 Feb 12;7(3):185-90 [PMID: 22327876]
  6. Nat Nanotechnol. 2015 Jun;10(6):554-62 [PMID: 25984833]
  7. Biophys J. 2001 Mar;80(3):1195-209 [PMID: 11222284]
  8. J Biol Chem. 1989 May 5;264(13):7576-83 [PMID: 2468670]
  9. Nano Lett. 2012 Nov 14;12(11):5815-20 [PMID: 23030066]
  10. Pflugers Arch. 2003 Oct;447(1):78-86 [PMID: 12851822]
  11. Acc Chem Res. 2018 May 15;51(5):1046-1053 [PMID: 29648779]
  12. Cold Spring Harb Perspect Biol. 2011 Nov 01;3(11):a004242 [PMID: 21875987]
  13. Langmuir. 2014 Oct 21;30(41):12362-7 [PMID: 25244597]
  14. Science. 2004 Feb 13;303(5660):1007-10 [PMID: 14963329]
  15. Hippokratia. 2007 Jul;11(3):124-8 [PMID: 19582206]
  16. Nat Cell Biol. 2001 May;3(5):466-72 [PMID: 11331874]
  17. Small. 2013 Jan 28;9(2):263-72 [PMID: 23034997]
  18. EMBO J. 2017 Mar 1;36(5):568-582 [PMID: 28137748]
  19. Nat Commun. 2014;5:3206 [PMID: 24487777]
  20. Nanoscale Res Lett. 2014 Feb 03;9(1):56 [PMID: 24484729]
  21. J Biol Chem. 1997 Oct 24;272(43):27147-54 [PMID: 9341156]
  22. Nat Commun. 2014 Apr 07;5:3613 [PMID: 24710350]
  23. Biophys J. 1999 Mar;76(3):1659-67 [PMID: 10049346]
  24. Nat Rev Neurosci. 2009 Oct;10(10):701-12 [PMID: 19738623]
  25. J Phys Chem B. 2015 Feb 19;119(7):2968-78 [PMID: 25622192]
  26. Med Biol Eng Comput. 2006 Mar;44(1-2):5-14 [PMID: 16929916]
  27. Nat Nanotechnol. 2011 Dec 18;7(3):174-9 [PMID: 22179566]
  28. Biophys J. 2005 Dec;89(6):3741-56 [PMID: 16169971]
  29. Nat Nanotechnol. 2012 Jan 10;7(3):180-4 [PMID: 22231664]
  30. Am J Physiol. 1997 Dec;273(6):C1900-7 [PMID: 9435495]
  31. Cardiovasc Res. 2013 Jul 15;99(2):260-8 [PMID: 23572234]
  32. J Biomed Mater Res. 2002 Mar 15;59(4):618-31 [PMID: 11774323]
  33. Nature. 2006 Jul 27;442(7101):457-60 [PMID: 16871217]
  34. Nanotechnology. 2012 Oct 19;23(41):415102 [PMID: 23010859]
  35. J Clin Pathol. 1972 Oct;25(10):912-4 [PMID: 4119008]
  36. Adv Drug Deliv Rev. 2011 Jul 18;63(8):610-5 [PMID: 21118706]
  37. Nano Lett. 2013;13(12):6002-8 [PMID: 24237230]
  38. ACS Appl Mater Interfaces. 2018 Aug 29;10(34):29107-29114 [PMID: 30081625]
  39. Nat Nanotechnol. 2013 Feb;8(2):83-94 [PMID: 23380931]
  40. Sci Rep. 2016 Mar 18;6:23258 [PMID: 26987342]
  41. ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10510-9 [PMID: 24074264]
  42. J R Soc Interface. 2017 Oct;14(135): [PMID: 28978745]
  43. J Neurophysiol. 2010 Jul;104(1):559-68 [PMID: 20427620]
  44. J Cell Physiol. 1997 Feb;170(2):166-73 [PMID: 9009145]
  45. J Biol Chem. 1998 Mar 20;273(12):7059-65 [PMID: 9507015]
  46. Small. 2012 Nov 19;8(22):3396-9 [PMID: 22887607]
  47. ACS Nano. 2015 Dec 22;9(12):11667-77 [PMID: 26554425]
  48. Am J Physiol Cell Physiol. 2008 Apr;294(4):C917-30 [PMID: 18199705]
  49. J Bone Miner Res. 2002 Mar;17(3):481-92 [PMID: 11874239]
  50. Lab Chip. 2012 Nov 7;12(21):4397-402 [PMID: 22930315]
  51. Ann N Y Acad Sci. 1999 Oct 30;888:195-210 [PMID: 10842634]
  52. Cell. 2006 Jun 30;125(7):1361-74 [PMID: 16814721]
  53. Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5815-20 [PMID: 20212151]
  54. Nano Lett. 2010 Oct 13;10(10):4020-4 [PMID: 20815404]
  55. Front Neurosci. 2015 Jan 06;8:423 [PMID: 25610364]
  56. Nat Nanotechnol. 2017 May;12(5):460-466 [PMID: 28192391]
  57. Neurosurgery. 1995 Feb;36(2):382-92 [PMID: 7537356]
  58. Lab Chip. 2012 Aug 21;12(16):2865-73 [PMID: 22678065]
  59. Nat Rev Drug Discov. 2008 Apr;7(4):358-68 [PMID: 18356919]
  60. Small. 2013 Dec 9;9(23):4006-16, 3905 [PMID: 23813871]
  61. Am J Physiol Cell Physiol. 2005 Jul;289(1):C130-7 [PMID: 15758043]
  62. ACS Nano. 2014 Jul 22;8(7):6713-23 [PMID: 24963873]
  63. Biosens Bioelectron. 2008 Jan 18;23(6):811-9 [PMID: 17959368]
  64. Cold Spring Harb Perspect Biol. 2009 Jul;1(1):a002576 [PMID: 20066080]
  65. Beilstein J Nanotechnol. 2016 Feb 26;7:296-301 [PMID: 26977386]

Word Cloud

Created with Highcharts 10.0.0enelectrochemicalmasseintracellularassemblieselectriccellactivitycellularadhesionrecordingscollectivesignalsmembranepotentialselectricalactionselectricallycoupledinterfaceelectrodeIntracellularCoordinatedmulticellularionfluxesgradientssteadyfieldsplayimportantroletissuespatialorganizationmanyphysiologicalprocesseslikewoundhealinginflammatoryresponseshormonereleasemasscumulateswithincollectivesdeducedconsiderationsindividuallevelHowevercontinuouslysamplinggloballarge-scaleresolutionlongtimeperiodsimpededlackappropriaterecordingtechniquespresentbioelectricalconsistinglowimpedanceverticalgoldnanoelectrodeinterfacesablepenetratecoursetherebyallowingtransverseNRKfibroblastC2C12myotubeSH-SY5Yneuronalnetworks200000cellsfoundaccessnanoelectrodescorrelatessubstratedynamicspenetrationstabilizationsealingelectrode-cellinvolvesrecruitmentsurroundingfocalcomplexesanchoringactinbundlesformcaulkingbasestableseveraldaysmonitoringbasalwellpharmacologicallyalteredhighsignal-to-noiseratiosexcellentcouplingperformedAdhesionStabilizedMasseElectricalRecordingsMulticellularAssembliesNanoelectrodescell-adhesionsignaling

Similar Articles

Cited By