Midbiotics: conjugative plasmids for genetic engineering of natural gut flora.

Pilvi Ruotsalainen, Reetta Penttinen, Sari Mattila, Matti Jalasvuori
Author Information
  1. Pilvi Ruotsalainen: University of Jyväskylä, Department of Biological and Environmental Science, Nanoscience Center, Jyväskylä, Finland.
  2. Reetta Penttinen: University of Jyväskylä, Department of Biological and Environmental Science, Nanoscience Center, Jyväskylä, Finland. ORCID
  3. Sari Mattila: Department of Biological Sciences, University of Helsinki, Helsinki, Finland.
  4. Matti Jalasvuori: University of Jyväskylä, Department of Biological and Environmental Science, Nanoscience Center, Jyväskylä, Finland.

Abstract

The possibility to modify gut bacterial flora has become an important goal, and various approaches are used to achieve desirable communities. However, the genetic engineering of existing microbes in the gut, which are already compatible with the rest of the community and host immune system, has not received much attention. Here, we discuss and experimentally evaluate the possibility to use modified and mobilizable CRISPR-Cas9-endocing plasmid as a tool to induce changes in bacterial communities. This plasmid system (briefly midbiotic) is delivered from bacterial vector into target bacteria via conjugation. Compared to, for example, bacteriophage-based applications, the benefits of conjugative plasmids include their independence of any particular receptor(s) on host bacteria and their relative immunity to bacterial defense mechanisms (such as restriction-modification systems) due to the synthesis of the complementary strand with host-specific epigenetic modifications. We show that conjugative plasmid in association with a mobilizable antibiotic resistance gene targeting CRISPR-plasmid efficiently causes ESBL-positive transconjugants to lose their resistance, and multiple gene types can be targeted simultaneously by introducing several CRISPR RNA encoding segments into the transferred plasmids. In the rare cases where the midbiotic plasmids failed to resensitize bacteria to antibiotics, the CRISPR spacer(s) and their adjacent repeats or larger regions were found to be lost. Results also revealed potential caveats in the design of conjugative engineering systems as well as workarounds to minimize these risks.

Keywords

References

  1. Nat Biotechnol. 2014 Nov;32(11):1141-5 [PMID: 25240928]
  2. PLoS Med. 2011 Oct;8(10):e1001104 [PMID: 22022233]
  3. Future Microbiol. 2016 Aug;11:999-1009 [PMID: 27503765]
  4. Nat Biotechnol. 2013 Mar;31(3):233-9 [PMID: 23360965]
  5. J Mol Biol. 1994 Jun 24;239(5):623-63 [PMID: 8014987]
  6. J Antibiot (Tokyo). 2017 Jun;70(6):805-808 [PMID: 28352105]
  7. Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7503-8 [PMID: 20363958]
  8. Front Microbiol. 2013 Apr 17;4:87 [PMID: 23616784]
  9. Clin Infect Dis. 2016 Aug 1;63(3):310-8 [PMID: 27143671]
  10. Microbiome. 2013 Jan 09;1(1):3 [PMID: 24467987]
  11. Biol Lett. 2011 Dec 23;7(6):902-5 [PMID: 21632619]
  12. Clin Microbiol Infect. 2014 Dec;20(12):1357-62 [PMID: 24980276]
  13. Clin Microbiol Rev. 2013 Oct;26(4):744-58 [PMID: 24092853]
  14. J Antimicrob Chemother. 2012 Nov;67(11):2640-4 [PMID: 22782487]
  15. J Antimicrob Chemother. 2016 Oct;71(10):2729-39 [PMID: 27317444]
  16. BMC Res Notes. 2018 Mar 22;11(1):190 [PMID: 29566738]
  17. Science. 2011 Oct 7;334(6052):105-8 [PMID: 21885731]
  18. Microbiology. 2013 Feb;159(Pt 2):328-38 [PMID: 23197173]
  19. Cell Host Microbe. 2016 Oct 12;20(4):515-526 [PMID: 27693307]
  20. Gastroenterology. 2012 Mar;142(3):490-6 [PMID: 22155369]
  21. Virology. 1955 Jul;1(2):190-206 [PMID: 13267987]
  22. Nat Commun. 2017 Nov 22;8(1):1689 [PMID: 29162798]
  23. J Bacteriol. 1998 Dec;180(24):6538-43 [PMID: 9851996]
  24. Anal Biochem. 2008 Apr 15;375(2):373-5 [PMID: 18157935]
  25. N Engl J Med. 2013 Jan 31;368(5):407-15 [PMID: 23323867]
  26. Microbiol Mol Biol Rev. 2010 Sep;74(3):434-52 [PMID: 20805406]
  27. Biochim Biophys Acta. 1988 Dec 20;951(2-3):365-74 [PMID: 2850014]
  28. Genome Med. 2016 May 10;8(1):52 [PMID: 27159972]
  29. mSystems. 2018 Oct 2;3(5):null [PMID: 30320219]
  30. Science. 2013 Feb 15;339(6121):823-6 [PMID: 23287722]
  31. Nat Biotechnol. 2014 Nov;32(11):1146-50 [PMID: 25282355]
  32. Antimicrob Agents Chemother. 2009 Jun;53(6):2227-38 [PMID: 19307361]
  33. J Crohns Colitis. 2014 Dec;8(12):1569-81 [PMID: 25223604]

MeSH Term

Anti-Bacterial Agents
CRISPR-Cas Systems
Conjugation, Genetic
Escherichia coli
Gastrointestinal Microbiome
Gene Editing
Genetic Engineering
Plasmids
RNA, Guide, CRISPR-Cas Systems
beta-Lactam Resistance

Chemicals

Anti-Bacterial Agents
RNA, Guide, CRISPR-Cas Systems

Word Cloud

Created with Highcharts 10.0.0conjugativebacterialengineeringplasmidplasmidsgutbacteriaresistanceCRISPRpossibilityfloracommunitiesgenetichostsystemmobilizablemidbioticssystemsantibioticgenemodifybecomeimportantgoalvariousapproachesusedachievedesirableHoweverexistingmicrobesalreadycompatiblerestcommunityimmunereceivedmuchattentiondiscussexperimentallyevaluateusemodifiedCRISPR-Cas9-endocingtoolinducechangesbrieflydeliveredvectortargetviaconjugationComparedexamplebacteriophage-basedapplicationsbenefitsincludeindependenceparticularreceptorrelativeimmunitydefensemechanismsrestriction-modificationduesynthesiscomplementarystrandhost-specificepigeneticmodificationsshowassociationtargetingCRISPR-plasmidefficientlycausesESBL-positivetransconjugantslosemultipletypescantargetedsimultaneouslyintroducingseveralRNAencodingsegmentstransferredrarecasesfailedresensitizeantibioticsspaceradjacentrepeatslargerregionsfoundlostResultsalsorevealedpotentialcaveatsdesignwellworkaroundsminimizerisksMidbiotics:naturaleditingESBLcarriageGeneticenterobacteria

Similar Articles

Cited By